|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Детерминированные сигналыКлассификация детерминированных сигналовосуществляется на основании существенных признаков соответствующих математических моделей сигналов. Обычно выделяют два класса детерминированных сигналов: периодические и непериодические. К периодическим относят гармонические и полигармонические сигналы. Гармонические сигналы (Рис. 2.3.1), описываются следующими формулами: s (t) = A sin(2π f0t +φ) = A sin(ω0 t + φ) или s (t) = A× cos(ω 0 t +f), где А, f0, ω0, φ, f - постоянные величины: А - амплитуда сигнала, f0 - циклическая частота в герцах, ω0 - угловая частота в радианах, j и f - начальные фазовые углы в радианах. Период одного колебания . При j = f - p/2 синусные и косинусные функции описывают один и тот же сигнал. Частотный спектр сигнала представлен амплитудным и фазовым значением одной частоты. Рис. 2.3.1. Гармонический сигнал и его АЧХ. Полигармонические сигналы составляют наиболее широко распространенную группу периодических сигналов (Рис. 2.3.2) и описываются выражениями: , или: s (t) = y (t ± kTp), k = 1,2,3,..., где Тp - период одного полного колебания сигнала. Число циклов колебаний за единицу независимой переменной t называют фундаментальной частотой . Полигармонические сигналы представляют собой сумму определенной постоянной составляющей и произвольного (в пределе - бесконечного) числа гармонических составляющих с частотами, кратными фундаментальной частоте fp, и с произвольными значениями амплитуд An и фаз j n. Другими словами, частотный спектр полигармонических сигналов дискретен, поэтому получило широкое распространение математическое представление сигналов - в виде спектров (рядов Фурье). Рис. 2.3.2. Полигармонический сигнал и его АЧХ. К непериодическим сигналам относят почти периодические и апериодические сигналы. Почти периодические сигналы близки по своей форме к полигармоническим (Рис. 2.3.3). Они также представляют собой сумму двух и более гармонических сигналов, но не с кратными, а с произвольными частотами, отношения которых (хотя бы двух частот минимум) не относятся к рациональным числам, вследствие чего фундаментальный период суммарных колебаний бесконечно велик. Как правило, почти периодические сигналы порождаются физическими процессами, не связанными между собой. Например, . Естественно, частотный спектр почти периодических сигналов также дискретен. Рис. 2.3.3. Почти периодический сигнал и его АЧХ. Апериодические сигналы составляют основную группу непериодических сигналов и задаются произвольными функциями времени. На Рис. 2.3.4 показан пример такого сигнала, заданного формулой на интервале (0, ¥): s (t) = exp(-0.15 t) - exp(-0.17 t). Рис. 2.3.4. Апериодический сигнал и модуль его спектра. Частотный спектр апериодических сигналов непрерывен и для их представления в частотной области используется интегральное преобразование Фурье. Рис. 2.3.5. Импульсный сигнал и модуль его спектра. К апериодическим сигналам относятся также и импульсные сигналы. Импульсы представляют собой сигналы достаточно простой формы (Рис. 2.3.5), существующие в пределах конечных временных интервалов. В классе импульсных сигналов выделяют подкласс радиоимпульсов. Пример радиоимпульса приведен на Рис. 2.3.6. Уравнение радиоимпульса имеет вид: s (t) = u (t)cos(2π f0t +f 0), где cos(2π f0t +f 0) - гармоническое колебание заполнения радиоимпульса, u (t) – огибающая радиоимпульса или видеоимпульс. Рис. 2.3.6. Радиоимпульс и модуль его спектра. Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.004 сек.) |