|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Ауксины
Метаболизм и транспорт. ИУК широко распространена в растительном мире от бактерий до высших растений. У высших растений ее больше всего в развивающихся почках и листьях, в активном камбии, в формирующихся семенах, в пыльце. В целом растении синтез ауксина обычно наиболее интенсивен в верхушке главного побега. Его предшественники — аминокислота триптофан или триптамин. ИУК может также освобождаться из связанного состояния (из гликозидов, комплексов с аминокислотами или белками). Физиология и биохимия действия. Ауксин активирует деление и растяжение клеток, необходим для формирования проводящих пучков и корней, способствует разрастанию околоплодника. Ткани, обогащенные ауксином, обладают аттрагирующим действием, т. е. способны притягивать питательные вещества. В ряде случаев обработка ауксином задерживает процессы старения тканей и органов. Ауксин обеспечивает явление апикального доминирования, т. е. тормозящее влияние апикальной почки на рост пазушных почек. Первостепенную роль играет ИУК в ростовых движениях — тропизмах и настиях. Проникая в клетки, ИУК связывается со специфическими рецепторами, оказывая влияние на функциональную активность мембран, полирибосом и работу ядерного аппарата. Установлено, что в плазмалемме ауксин индуцирует работу Н+- помпы, в результате чего матрикс клеточных стенок закисляется. Это приводит к усилению активности кислых гидролаз и размягчению клеточных стенок, что является необходимым условием для роста клеток растяжением. Включение Н+- помпы усиливает поглотительную активность тканей, обогащенных ауксином (аттрагирующий эффект). Предполагается, что поступление Са2+ в клетку способствует усилению секреции кислых гидролаз и полисахаридов, необходимых для дальнейшего роста клеточных стенок. Комплекс фитогормона с рецептором, поступая в ядро, активирует синтез всех форм РНК, в том числе матричных, что в свою очередь приводит к формированию новых полирибосом и синтезу белков в цитоплазме. Цитокинины. Вещества, необходимые для индукции деления растительных клеток, получили название цитокининов. Впервые в чистом виде фактор клеточного деления был выделен из автоклавированного препарата ДНК спермы сельди. Это вещество было идентифицировано как 6-фурфуриламинопурин (кинетин). Природный цитокинин из незрелых зерновок кукурузы — зеатин — в 1963 г. получил Д. Летам. Метаболизм и транспорт. В настоящее время цитокинины обнаружены у микроорганизмов, водорослей, папоротников, мхов и других высших растений. Наиболее богаты ими развивающиеся семена и плоды, а также меристематически активные участки. Установлено, что основное место синтеза цитокинина у вегетирующих растений — апикальные меристемы корней. Из корней цитокинины пассивно транспортируются в надземные органы по ксилеме. Все природные цитокинины — производные изопентениладенина. Они синтезируются путем конденсации аденозин-5-монофосфата и изопентенилпирофосфата. Цитокинин-активные рибонуклеозиды содержатся также в тРНК, однако эти тРНК сами по себе цитокининовой активностью не обладают. Связанные цитокинины в виде риботидов, рибозидов и гликозидов представляют собой транспортные и запасные формы. Физиология и биохимия действия. Цитокинины индуцируют деление клеток, однако это их действие наблюдается лишь в присутствии ауксина. Обработка цитокинином вместе с ИУК побуждает дифференцированные клетки растений снова перейти к делению. У семядолей тыквы и листьев фасоли цитокинин активирует рост клеток растяжением. К. Мотес и сотрудники показали, что обогащение тканей цитокинином предотвращает распад хлорофилла и деградацию внутриклеточных структур у изолированных листьев. Эти же авторы установили, что участок изолированного листа, обработанный цитокинином (кинетином), становится зоной притяжения меченых аминокислот и других метаболитов. Таким образом, цитокинин необходим для нормального развития листа и для поддержания его аттрагирующей способности. Гиббереллины. Японский исследователь Е. Куросава в 1926 г. установил, что культуральная жидкость фитопатогенного гриба Gibberella fujikuroi содержит химическое вещество, способствующее сильному вытягиванию стеблей у растений. Т. Ябута выделил это вещество в кристаллическом виде и назвал его гиббереллином. В 1954 г. англичанин Б. Кросс расшифровал структуру гибберелловой кислоты — тетрациклического дитерпеноида. В настоящее время обнаружено более 60 различных гиббереллинов кислой и нейтральной природы. Метаболизм и транспорт. Гиббереллины обнаружены у грибов, водорослей и высших растений. Наибольшее количество гиббереллинов у высших растений содержится в незрелых семенах. Гиббереллины синтезируются главным образом в листьях, а также в корнях. Свет стимулирует их образование. Транспорт гиббереллинов происходит пассивно с ксилемным и флоэмным током. Как и все полиизопреновые соединения, ГА синтезируются из ацетил-СоА через мевалоновую кислоту и геранилгераниол; ближайший предшественник — каурен. Связанные в виде гликозидов гиббереллины являются запасной и транспортной формами. Физиология и биохимия действия. Действие гормонов на растения наиболее типично проявляется в удлинении их стебля. Особенно наглядно это прослеживается у карликовых растений и у длиннодневных растений, находящихся в фазе розетки. У последних гиббереллин способствует образованию цветоноса, а часто и зацветанию. Места действия его — апикальные и интеркалярные меристемы, где под влиянием этого фитогормона активируется деление клеток. Ускоряется также растяжение клеток, однако непосредственно на этот процесс гормон действует слабо. Гиббереллины не стимулируют рост корня, а в повышенных концентрациях даже ухудшают его состояние. Обработка ими выводит семена и клубни некоторых растений из состояния покоя. Активирующее действие гормонов на синтез нуклеиновых кислот и белков было выявлено у многих растительных объектов. Наиболее важные результаты были получены при использовании алейронового слоя эндосперма зерновок ячменя. В этом объекте под действием гиббереллина индуцируется синтез матричных РНК, которые кодируют образование амилазы. Абсцизины. В 1961 г. В. Лью и X. Карнс из сухих зрелых коробочек хлопчатника выделили в кристаллическом виде вещество, ускоряющее опадение листьев, и назвали его абсцизином (от англ, abscission — отделение, опадение). Аналогичная работа была проделана в лаборатории Ф. Эддикотта; полученное ими вещество ускоряло опадение коробочек хлопчатника и ингибировало рост отрезков колеоптилей, индуцированный ИУК. Ф. Уоринг и др. (1963) из листьев березы выделили ингибитор роста, который вызывал состояние покоя у почек растущих побегов, назвав это соединение дормином (от англ. dormancy — покой). В дальнейшем оказалось, что дормин и абсцизин — одно и то же вещество. Молекулярная структура абсцизина (абсцизовой кислоты) была установлена в 1963 г. одновременно Окумой и др. и Корнфортом и др. Метаболизм и транспорт. АБК обнаружена у покрытосеменных и голосеменных растений, а также у папоротникообразных, хвощей, мхов. У водорослей и печеночных мхов АБК отсутствует и ее функцию выполняет лунуларовая кислота — соединение, относящееся к другому классу веществ. АБК не найдена также у грибов и бактерий. Богаты АБК старые листья, зрелые плоды, покоящиеся почки и семена. Абсцизин синтезируется главным образом в листьях, а также в корневом чехлике двумя путями: 1) из мевалоновой кислоты через А3-изопентилпирофосфат и геранилпирофосфат 2) непосредственно путем распада каротиноидов Физиология и биохимия действия. В большинстве случаев АБК тормозит рост растений. Причем этот фитогормон может выступать антагонистом ИУК, цитокинина и гиббереллинов. Однако в некоторых случаях АБК функционирует как активатор: она стимулирует развитие партенокарпических плодов у розы, удлинение гипокотиля огурца, образование корней у черенков фасоли. АБК ─ сильный ингибитор прорастания семян и роста почек и накапливается в них при переходе в состояние физиологического покоя. Как уже отмечалось, увеличение содержания АБК в тканях приводит к формированию отделительного слоя в черешках и плодоножках и опадению листьев и плодов. Опадение тесно сопряжено с процессами старения листьев и созревания плодов. АБК ускоряет распад нуклеиновых кислот, белков, хлорофилла. Одна из наиболее важных функций АБК — ее участие в механизмах стресса. Абсцизовая кислота быстро накапливается в тканях при действии на растение неблагоприятных факторов внешней среды, особенно при водном дефиците, вызывая быстрое закрывание устьиц, что снижает транспирацию. Предполагается, что АБК, вырабатываемая корневым чехликом и тормозящая рост корня растяжением, участвует в механизме тропизмов корней. Закрывание устьиц после обработки АБК наблюдается уже через 3 мин, торможение ауксинзависимого выделения ионов Н+ и растяжения отрезков колеоптилей овса — через 4 — 5 мин. Предполагается, что АБК ингибирует функциональную активность Н+ -помпы, что может иметь многообразные последствия. Этилен. Газ этилен (СН2 = СН2) в низких концентрациях (0,04-1,0 мкл/л) обладает сильным морфогенетическим действием на растения. Впервые физиологический эффект этилена на растения был описан Д. Н. Нелюбовым (1901), который обнаружил, что у этиолированных проростков гороха этилен вызывает «тройную реакцию» стебля: ингибирование растяжения, утолщение и горизонтальную ориентацию. В 20-х годах было показано, что этилен способен ускорять созревание плодов. Метаболизм и транспорт. Этилен образуется некоторыми бактериями, грибами и многими растительными организмами. Наибольшая скорость синтеза этилена наблюдается в стареющих листьях и в созревающих плодах. Выделение этилена растениями тормозится недостатком кислорода (кроме риса) и может регулироваться светом. У высших растений этилен синтезируется из метионина. Ближайший предшественник этилена — 1-аминоциклопропан-1-карбоновая кислота (АЦК). Предполагается, что АЦК может служить также транспортной формой этилена, перемещающейся по растению с транспирационным током. Концентрация этилена в тканях контролируется скоростью его синтеза. Газ свободно диффундирует по межклетникам в окружающую среду. Физиология и биохимия действия. Этилен ингибирует удлинение проростков, останавливает рост листьев (у двудольных) и вызывает задержку митозов. Все эти явления устраняются повышенными концентрациями СО2. Удлинение стебля тормозится из-за изменения направления роста клеток с продольного на поперечное, что приводит к утолщению стебля. Обработка этиленом индуцирует корнеобразование на стебле. У некоторых растений этилен вызывает эпинастию (опускание) листьев. В то же время у многих видов он ускоряет прорастание пыльцы, семян, клубней и луковиц. Гормон тормозит полярный транспорт ауксина и способствует образованию его конъюгатов. По-видимому, именно с этим связана способность этилена усиливать процессы старения, опадения листьев и плодов, устранять апикальное доминирование. Как уже отмечалось, этилен ускоряет созревание плодов. Резко усиливается его выработка при стрессе и повреждении тканей (стрессовый этилен). Повышение концентрации ауксина (и цитокинина) также активирует продукцию этилена. Имеются данные о том, что ИУК индуцирует синтез фермента, который ответствен за образование АЦК. Механизм действия этилена изучен недостаточно. Возможно, он влияет на состояние цитоскелета, на взаимосвязь мембран, микротрубочек и микрофиламентов.
Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.01 сек.) |