АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Причины устойчивости пен

Читайте также:
  1. Анализ состояния расчетов по кредиторской задолженности, возникшей в бюджетной и во внебюджетной деятельности, причины её образования, роста или снижения.
  2. Анализ финансовой устойчивости предприятия
  3. Анализ финансовой устойчивости предприятия
  4. Безработица в Республике Беларусь: особенности, причины
  5. В) Валидность – один из важнейших психометрических критериев качества теста, указывающий на степень его устойчивости к искажающему воздействию случайных факторов
  6. В-3. Циклическое развитие экономики. Причины, фазы.
  7. Виды и причины конфликтов
  8. Виды и причины обводнения скважин
  9. Внешние причины
  10. Внешние причины возникновения техногенной ЧС
  11. Выветривание, причины, виды. Меры борьбы с выветриванием горных пород.
  12. Г) вид равновесия тела и степень его устойчивости.

 

Устойчивость пен можно объяснять разными факторами, а именно действием так называемого эффекта Гиббса, наличием у пленки сравнительно высокой поверхностной вязкости или особых механических свойств (структурно-механический фактор устойчивости) и существованием в приповерхностном слое пленки гидратных или двойных электрических слоев, препятствующих ее утоньшению (термодинамический фактор устойчивости). Рассмотрим последовательно эти три фактора устойчивости пены.

 

Пленки пены при ее получении путем пропускания через жидкость пузырьков воздуха, а также при медленном уменьшении объема пены в результате сжатия отдельных ее пузырьков или их разрушения испытывают локальные деформации и поэтому должны хорошо переносить как сжатия, так и растяжения. Можно было бы считать, что легкой деформируемости пены и ее прочности должно способствовать малое поверхностное натяжение на границе пенообразующая жидкость—воздух. Однако это не так. Опыт показал, что для устойчивости пены имеет значение не столько малое поверхностное натяжение, сколько способность жидкой пленки легко и быстро изменять его значение. Чтобы выдержать локальные деформации без разрыва, пленка должна обладать способностью повышать поверхностное натяжение при локальных растяжениях и уменьшать его при локальных сжатиях. Этими изменениями компенсируются локальные деформации и разности в напряжениях, возникающих в разных участках пленки, и обеспечивается ее прочность. Гиббс называл эту способность эффективной упругостью пленки. Ее причина заключается в том, что если один участок пленки подвергается, например, растяжению, то его поверхность увеличится и вследствие этого концентрация поверхностно-активного вещества на межфазной границе уменьшится. Уменьшение поверхностной концентрации обусловит повышение поверхностного натяжения в растянутом участке, вследствие чего участок стремится сжаться в большей степени, чем все соседние нерастянутые участки. Обратное явление наблюдается при деформации, вызывающей сжатие пленки.

 

Совершенно очевидно, что «упругостью» в том смысле, в каком понимал ее Гиббс, могут обладать только пленки, полученные из растворов поверхностно-активных веществ. Пленки из индивидуальных жидкостей, обладающих постоянным поверхностным натяжением, не изменяющимся при их растяжении или сжатии, лишены подобной упругости, и поэтому получить из таких жидкостей устойчивые пены невозможно. Существенно также, что наиболее устойчивые пены обычно получаются из растворов поверхностно-активных веществ, обладающих не минимальным поверхностным натяжением, а способных наиболее резко изменять поверхностное натяжение с концентрацией.

 

При объяснении устойчивости реальной пены с точки зрения Гиббса следует иметь в виду особое строение этой системы. Именно благодаря своеобразной структуре пены эффект Гиббса вызывает значительные затруднения в стекании жидкости в пленках пены, что очень сильно сказывается на устойчивости всей системы. Каркас пены, как было показано, состоит из приблизительно плоских жидких пленок, являющихся стенками отдельных ячеек. Там, где сходятся три пленки, образуются ребра пузырька, в которых жидкость имеет сильно вогнутую поверхность. По законам капиллярности в этих местах жидкость имеет пониженное давление, что вызывает отсасывание ее из плоских частей каркаса пены в вогнутые. В результате этого в пленках пены возникает течение жидкости к ребрам. Это течение способствует самопроизвольному утоньшению пленок пены. Однако такое течение жидкости может происходить лишь внутри пленки, на поверхности оно невозможно из-за эффекта Гиббса. В самом деле, при течении жидкости от центральной части пленки к ребрам должно было бы увеличиться поверхностное натяжение в центральных частях пленки и в результате этого на поверхности ее тотчас возник бы противоток жидкости, направленный от ребер к центру, из-за чего течение прекратилось бы. Таким образом, стекание жидкости происходит так, как если бы поверхность пленки была неподвижной, т. е. жидкость как бы протекает по плоскому капилляру. Очевидно, стекание по такому капилляру происходит тем медленнее, чем тоньше пленка.

 

Рассмотренные выше представления не могут все же полностью объяснить устойчивость пены. Во-первых, с этой точки зрения трудно понять зависимость устойчивости пены от природы и концентрации пенообразователя. При наличии в жидкости достаточно активного пенообразователя режим стенания жидкости в пленках, казалось бы, не должен зависеть от этих обоих факторов. Однако опыт показывает, что это не так. Во-вторых, согласно этой точки зрения упругость пленки должна возрастать по мере ее утоньшения в результате отсасывания жидкости к ребрам пены. Это обусловлено тем, что запас поверхностно-активного вещества, содержащегося в тонких пленках, меньше, а следовательно, и уменьшение их поверхностной концентрации при растяжении будет больше. Однако, если с уменьшением толщины пленки упругость ее возрастает, то непонятно, почему же пленка рвется

 

Рассмотренный фактор устойчивости является, по-видимому, определяющим для малоустойчивых пен, стабилизованных сравнительно низкомолекулярными пенообразователями.

 

Устойчивость высокоустойчивых пен объясняется существованием в пленках высоковязкого или механически прочного адсорбционного слоя из молекул пенообразователя. Такое объяснение было предложено впервые еще в прошлом столетии Плато, а затем особенно широко было развито в работах П. А. Ребиндера и его школы. П. А. Ребиндер считает, что на поверхности растворов мыл или мылоподобных веществ образуются высоковязкие адсорбционные слои с гелеобразным строением, диффузно распространяющиеся в глубь раствора. Эти слои, с одной стороны, замедляют стекание жидкости в пленке, с другой — придают пленке пены высокую структурную вязкость и механическую прочность. Однако исследования А. А. Трапезникова, Лоуренса и других исследователей показали, что стойкие пены могут получаться и тогда, когда не обнаруживается заметная поверхностная вязкость или структурно-механические свойства на границе раствор — воздух.

 

К. В. Зотовой и А. А. Трапезниковым обнаружен интересный факт, позволяющий в некоторых случаях по-новому объяснить устойчивость пленок пены. Эти авторы установили, что поверхностно-активные коллоидные компоненты могут переходить в пленку в большем количестве, чем в адсорбционный слой на поверхности исходного раствора. Это обусловлено особыми условиями образования пленки, способствующими непрерывному обновлению поверхности и обмену поверхностно-активными компонентами. В результате перехода в пленку непрочных коллоидных агрегатов, возникших по тем или иным причинам в растворе, в глубине пленки между адсорбционными слоями может образоваться тиксотропная структура, сильно повышающая вязкость этой части пленки. Сами же адсорбционные слои остаются при этом маловязкими. Понятно, что благодаря такой структуре сильно замедляется процесс стекания и повышается устойчивость пен. С таким объяснением устойчивости пены хорошо согласуется исключительная длительность существования пен, стабилизованных высокомолекулярными соединениями. В этом случае образование высоковязкой тиксотропной структуры в глубине. Пленки пены почти не вызывает сомнений.

 

Перейдем теперь к объяснению стабильности высокоустойчивых пен с помощью термодинамического фактора устойчивости.

Б. В. Дерягин, первый показавший значение этого фактора, объясняет возможность существования пен, исходя из разработанных им представлений о расклинивающем давлении. Причиной расклинивающего давления в пленках пены, стабилизованной ионогенными веществами, является отталкивание двойных электрических слоев, образованных ионами пенообразователя в растворе около обеих поверхностей пленки. Наличие такого отталкивания доказано Б. В. Дерягиным и А. С. Титиевской при исследовании сжатия двухсторонних пленок, образованных в месте соприкосновения двух пузырьков пены, с помощью очень тонкой методики и специально сконструированного прибора.

 

Эти исследования показали, что пленки, полученные из водных растворов олеата натрия, при утоньшении в результате наложения давления достигали некоторой постоянной толщины, которая дальше уже не изменялась. Равновесная толщина таких пленок составляла сотни ангстрем при малом содержании в пенообразующей жидкости электролитов. Наоборот, в достаточно концентрированных растворах электролитов равновесная толщина пленок была значительно меньше по сравнению с теоретически вычисленной. Последнее обстоятельство явилось прекрасным доказательством электростатической природы расклинивающего давления в этом случае. При сравнительно высоких концентрациях электролита (порядка 0,1 н. и более), когда диффузные ионные слои сжаты до предела, зависимость толщины пленки от концентрации не соблюдалась. Однако пленки при этом оставались устойчивыми. Это указывает на то, что при таких условиях в действие вступают уже силы отталкивания неэлектростатической природы, вероятно, связанные с гидратацией монослоев пенообразователя. Установленное Б. В. Дерягиным и А. С. Титиевской положение, что равновесные толщины адсорбированных пленок как ионогенных, так и неионогенных пенообразователей не зависят от высоких концентраций электролитов, а также от температуры, указывает на специфическую структуру этих слоев, придающих им свойства особой граничной фазы.

 

С точки зрения А. А. Трапезникова стабильность пены обусловливается гидратацией полярных групп молекул пенообразователя, что тормозит стекание жидкости в пленке пены. Сцепление концов углеводородных цепей, расположенных на межфазной поверхности со стороны газовой фазы, нужно лишь для обеспечения связности (цельности) адсорбционного слоя. При этом адсорбционный слой должен быть достаточно легкоподвижным и, следовательно, разреженным для того, чтобы разрывы, образующиеся в результате стекания жидкости в пленке, успевали своевременно «залечиваться». Причиной разрушения пены А. А. Трапезников считает дегидратацию полярных групп адсорбционного слоя, наступающую вследствие непрерывного отсоса дисперсионной среды. В результате возникают сначала поверхностные, а затем и трехмерные агрегаты из молекул пенообразователя, не обладающие стабилизующим действием, и пленка в конце концов разрывается.

 

Таким образом, существует несколько факторов, объясняющих устойчивость пен. В настоящее время все больше исследователей приходит к выводу, что вообще не может быть единой теории устойчивости пен и что причины существования пен зависят от пенообразователей и условий получения пен.


1 | 2 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.)