АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Производство витаминов

Читайте также:
  1. II. Производство
  2. V2: Патофизиология обмена витаминов
  3. Анализ динамики затрат на производство продукции
  4. Бережливое производство
  5. Большие группы. Производство коллективных благ
  6. В отечественной теории и практике используется следующая классификация затрат на производство продукции.
  7. Влияние изменения возрастной структуры на воспроизводство населения
  8. Вопрос 3. Производство в условиях одной переменной затраты
  9. Воспроизводство вирусов, теория мемов и психогенетика.
  10. Воспроизводство кадрового потенциала
  11. Встреча с судебным приставом или исполнительное производство
  12. Выживание через производство потомства

Витамины представляют собой группу незаменимых органи­ческих соединений различной химической природы, необходи­мых любому организму в ничтожных концентрациях и выполняю­щих в нем каталитические и регуляторные функции. Недостаток того или иного витамина нарушает обмен веществ и нормальные процессы жизнедеятельности организма, приводя к развитию па­тологических состояний. Витамины не образуются у гетеротрофов. Способностью к синтезу витаминов обладают лишь автотрофы, в частности растения. Многие микроорганизмы также образуют це­лый ряд витаминов, поэтому синтез витаминов с помощью мик­роорганизмов стал основой для разработки технологий промыш­ленного производства этих биологически активных соединений.

Благодаря изучению физиологии и генетики микроорганизмов — продуцентов витаминов и выяснению путей биосинтеза каждого из них создана теоретическая основа для получения микробиологи­ческим способом практически всех известных в настоящее время витаминов. Однако с помощью энзимов целесообразнее произво­дить лишь особо сложные по строению витамины: В2, В12, (3-каротин (провитамин А) и предшественники витамина D. Осталь­ные витамины либо выделяют из природных источников, либо синтезируют химическим путем. Витамины используются в каче­стве лечебных препаратов, для создания сбалансированных пи­щевых и кормовых рационов и для интенсификации биотехноло­гических процессов.

 

Получение витамина В2 (рибофлавин).

Вплоть до 30-х годов прошлого столетия рибофлавин выделяли из природного сырья. В наибольшей концентрации он присутствует в моркови и печени трески. Из 1 т моркови можно изолировать лишь 1 г рибофлавина, а из 1 т печени — 6 г. В 1935 г. обнаружен активный продуцент рибофлавина — гриб Eremothecium ashbyii, способный при выра­щивании на 1 т питательной смеси синтезировать 25 кг витамина В2. Сверхсинтеза рибофлавина добиваются действием на дикие, штаммы мутагенов, нарушающих механизм ретроингибирования I синтеза витамина В2, флавиновыми нуклеотидами, а также изменением состава культуральной среды.

В состав среды для роста продуцентов витамина В2 входят до­статочно сложные органические вещества — соевая мука, куку­рузный экстракт, сахароза, карбонат кальция, хлорид натрия, гидрофосфат калия, витамины, технический жир. Грибы весьма чувствительны к изменению состава среды и подвержены инфи­цированию. Перед подачей в ферментер среду подвергают стери­лизации, добавляя к ней антибиотики и антисептики. Подготав­ливают жидкую питательную среду и посевной материал культу­ры дрожжей в разных емкостях — ферментере и посевном аппа­рате.

В качестве посевного материала используют споры Е. ashbyii, выращенные на пшене (7 — 8 дней при 29 — 30 °С). После стерили­зации жидкий посевной материал подается в ферментер. Процесс ферментации грибов для получения кормового рибофлавина длится 3 суток при температуре 28 — 30 °С. Концентрация рибофлавина в культуральной жидкости может достигать 1,4 мг/мл. По заверше­нии процесса ферментации культуральную жидкость концентри­руют в вакууме, высушивают на распылительной сушилке (влаж­ность 5 — 10%) и смешивают с наполнителями.

 

 

Получение витамина В12

Витамин В12 открыт в 1948 г. одновременно в США и Англии. В 1972 г. в Гарвардском университете был осуще­ствлен химический синтез корриноидного предшественника ви­тамина В12. Химический синтез корнестерона — структурного эле­мента корринового кольца витамина, включающий 37 стадий, в крупных масштабах не воспроизведен из-за сложности процесса.

Витамин В12 регулирует углеводный и липидный обмен, уча­ствует в метаболизме незаменимых аминокислот, пуриновых и пиримидиновых оснований, стимулирует образование предшественни­ков гемоглобина в костном мозге; применяется в медицине для лечения злокачественной анемии, лучевой болезни, заболеваний печени, полиневрита и т. п. Добавление витамина к кормам способ­ствует более полноценному усвоению растительных белков и повыша­ет продуктивность сельскохозяйственных животных на 10—15 %.

Первоначально витамин В]2 получали исключительно из при­родного сырья, но из 1 т печени можно было выделить всего лишь 15 мг витамина. Единственный способ его получения в настоящее время — микробиологический синтез. Обнаружение витамина в качестве побочного продукта при производстве антибиотиков в значительной степени стимулировало поиск организмов-проду­центов витамина и изучение путей его образования. Однако меха­низмы регуляции биосинтеза витамина В12 до настоящего време­ни полностью не расшифрованы. Известно, что при высоких кон­центрациях витамин полностью репрессирует синтез ключевых ферментов своего новообразования.

Продуцентами витамина В12 при его промышленном получе­нии служат актиномицеты, метанообразующие и фотосинтезирующие бактерии, одноклеточные водоросли.

В 70-х годах XX в. ин­терес ученых привлекли пропионовокислые бактерии, известные еще с 1906 г. и широко использующиеся для приготовления пре­паратов животноводства. Выделено 14 видов пропионовокислых бактерий, продуцирующих витамин В12;

Из культуральной жидкости витамин В,2 выделяют экстракцией органическими растворителями, ионообменной хроматографией с последующим осаждением из фракций в виде труднораствори­мых соединений. В процессе получения витамина В12 с помощью пропионовокислых бактерий применяют дорогостоящую антикор­розийную аппаратуру, сложные и дорогие питательные среды. Усовершенствование технологического процесса идет в направ­лении удешевления компонентов питательных сред (замена глю­козы сульфитными щелоками) и перехода с периодического культивирования на непрерывный процесс. В последние годы исследу­ется возможность получения витамина с использованием иммо­билизованных клеток пропионовокислых бактерий.

 

 

Для нужд животноводства сотрудниками Института биохимии им. А. Н. Баха РАН разработана более простая и дешевая техноло­гия получения витамина В12.

По указанной технологии ферментацию осуществляет слож­ный биоценоз термофильных микроорганизмов, производящих ме­тановое брожение. Комплекс микроорганизмов включает целлюлозоразлагающие, углеводсбраживающие, аммонифицирующие, сульфитвосстанавливающие и метанообразующие бактерии. На первой фазе процесса (10 —12 дней) развиваются термофильные углеводсбраживающие и аммонифицирующие бактерии. При этом в слабокислой среде (рН 5,0 — 7,0) органические соединения пре­вращаются в жирные кислоты и аммиак. На второй фазе, когда среду подщелачивают до рН 8,5, в биоценозе преобладают мета­нообразующие бактерии, которые сбраживают возникающие на первой фазе продукты до метана и диоксида углерода. Именно метанообразующие бактерии — главные продуценты витамина. Обо­гащение сред очищенными культурами метанообразующих бакте­рий увеличивает выход активных форм витамина В12.

 

Получение Витамина А и витамина D2.

1. Важное место в обмене веществ у животных занимает р-каротин, который в печени пре­вращается в витамин А (ретинол). В организме человека и живот­ных каротины не образуются. Основные источники Р-каротина для животных — растительные корма; человек получает Р-каротин также из продуктов животного происхождения. Р-Каротин можно выделить из ряда растительных объектов — моркови, тыквы, об­лепихи, люцерны. В начале 60-х годов XX в. разработана схема мик­робиологического синтеза Р-каротина, которая стала основой про­мышленного способа его получения. Установлено, что многие мик­роорганизмы — фототрофные бактерии, актиномицеты, плесне­вые грибы, дрожжи — синтезируют каротин) Характерно, что со­держание р-каротина у микроорганизмов во много раз превышает содержание этого провитамина у растений. Так, в 1 г моркови присутствует всего 60 мкг Р-каротина, в то время как в 1 г био­массы гриба Blaneslea trispora — 3 — 8 тыс. мкг.

Разработаны опыт­ные установки как периодического, так и непрерывного действия для синтеза Р-каротина, основной недостаток которых — высокая стоимость сырья и большая длительность процесса.

2. Микробиологическим способом получают и витамин D2 (эрго-/кальциферол), при производстве которого освоено дешевое сы­рье (углеводороды) и установлен стимулирующий эффект ульт­рафиолетовых лучей на синтез эргостерина культурой дрожжей.

 


1 | 2 | 3 | 4 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.004 сек.)