АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Условия образования и растворения

Читайте также:
  1. A. Бесполостное плотное образование (диаметром до 10 мм), возвышающееся над уровнем кожи и разрешающееся без образования рубца
  2. I. Условия конкурса
  3. II. Внешние условия действительности завещания
  4. II. Программные условия конкурса
  5. II. Требования к структуре образовательной программы дошкольного образования и ее объему
  6. II. Условия внутреннего спроса
  7. II. УСЛОВИЯ И СРЕДСТВА ЗАЩИТЫ (сортировка по тяжести: тяжелая-лекгая)
  8. II. Экономия на условиях труда за счет рабочего. Пренебрежение самыми необходимыми затратами
  9. III. Условия участия
  10. IV. Условия проведения Конкурса
  11. Ms dos, его основные условия.
  12. VI. Условия участия в турнире.

Труднорастворимый электролит может оставаться в растворе, пока произведение концентрации его ионов не превышает1 произведения растворимости. Другими словами, если произведение концентраций ионов меньше значения ПР малорастворимого электролита или равно ему, то в этих условиях осадок не образуется. Осадок образуется лишь в тех случаях, когда произведение концентрации ионов становится больше величины ПР. Это возможно при добавлении к раствору, содержащему малорастворимый электролит, хорошо растворимого электролита с одноименным ионом. Увеличение концентрации одного из ионов приводит к смещению динамического равновесия между раствором и твердой фазой в сторону образования осадка. Осадок выпадает до тех пор, пока величина произведения концентрации ионов в растворе не сравняется с величиной произведения растворимости. [ 1 ]

Если труднорастворимый электролит диссоциирует с образованием нескольких одинаковых ионов, то концентрация каждого из ионов при вычислении произведения растворимости должна быть возведена в соответствующую степень. [ 3 ]

Растворимость труднорастворимых электролитов понижается в присутствии других сильных электролитов, имеющих одноименные ионы.

Осадок труднорастворимого электролита образуется тогда, когда ионное произведение его станет больше произведения растворимости. На этом основании добавляют избыток осадителя для достижения полноты осаждения. [ 5 ]

   

Растворимость труднорастворимых электролитов увеличивается в присутствии ионов или молекул веществ, образующих с ионами труднорастворимого электролита растворимые соединения или комплексы. [ 6 ]

Растворимость труднорастворимого электролита, склонного образовывать недиссоциированные молекулы в присутствии хорошо растворимых электролитов, также образующих недиссоциированные молекулы, оценивается путем решения системы уравнений, состоящих из уравнений баланса ионов. [ 7 ]

Растворимость труднорастворимого электролита и концентрация образующих его ионов в насыщенном растворе может быть вычислена по величине его произведения растворимости. Методика соответствующих расчетов зависит от характера труднорастворимого электролита, а именно, является ли он солью сильной кислоты и сильного основания или же один из этих компонентов является слабым. [ 8 ]

Растворимость труднорастворимого электролита и концентрация образующих его ионов в насыщенном растворе может быть вычислена по величине его произведения растворимости. Методика соответствующих расчетов зависит от характера труднорастворимого электролита, а именно, является ли он солью сильной кислоты и сильного основания ли же один из этих компонентов является слабым. [ 9 ]

Так как труднорастворимые электролиты, используемые в аналитической практике, очень мало растворимы, то насыщенные растворы этих электролитов имеют чрезвычайно малую концентрацию. [ 10 ]

Насыщенные растворы труднорастворимых электролитов, используемые в аналитической практике, имеют чрезвычайно малую концентрацию. [ 11 ]

В растворе труднорастворимого электролита произведение концентраций ионов электролита характеризует его способность к растворению или к образованию осадка. [ 12 ]

Гетерогенные равновесия в водных растворах характеризуются тем, что перенос частиц происходит через поверхность раздела по крайней мере двух сосуществующих фаз.

По своему характеру двухфазные гетерогенные равновесия достаточно многообразны, но здесь будут затронуты лишь некоторые из них, представляющие наибольший практический интерес и имеющие важное значение в аналитической, физической химии и в различных химических технологиях.

с помощью каких реакций происходит образование гидроксид-фосфата кальция Ca10(PO4)6(OH)2 в костной ткани.
И кальций-фосфатный буфер из каких солей состоит? Ca(H2PO4)2/CaHPO4?

3Ca3(PO4)2 + Ca(OH)2 = 2Ca5(PO4)3OH
5CaHPO4 + 6NaOH = Ca5(PO4)3OH + 2Na3PO4 + 5H2O

Буферные системы

В процессе жизнедеятельности в организм поступают извне, а также образуются в результате метаболизма продукты, имеющие как кислый, так и основной характер, однако в норме они не изменяют рН внутренней среды благодаря защитным механизмам, регулирующим кислотно-основное равновесие. Различают физиологические и физико-химические механизмы регуляции кислотного-основного равновесия в организме.

В основе физиологических механизмов регуляции кислотно-основного равновесия лежат процессы метаболизма, дыхания и мочевыделения, которые изучаются в курсах биохимии, нормальной физиологии, патологической физиологии. В основе физико-химических механизмов лежит поддержание постоянства рН внутренней среды буферными системами организма, которые представлены буферными системами крови, клеток и внеклеточных пространств тканей.

Буферные растворы — это растворы, величина рН которых мало изменяется при добавлении к ним небольших количеств сильных кислот или щелочей, а также при разбавлении.

C точки зрения протонной теории простейший буферный раствор состоит из слабой кислоты и сопряженного ей основания или слабого основания и его сопряженной кислоты. В этом случае буферное действие растворов характеризуется наличием кислотно-основного равновесия:

НА ⇄ Н+ + А

слабая сопряженное

кислота основание

 

В + Н+ ⇄ ВН+

слабое сопряженная

основание кислота

 

Образуемые сопряженные кислотно-основные пары НА/А и В/ВН+ называют буферными системами.

Классификация буферных систем

1. Кислотные. Состоят из слабой кислоты и соли этой кислоты. Например, ацетатная буферная система (CH3COOH+ СН3СООNa), гидрокарбонатная буферная система (H2CO3 +NaHCO3).

2. Основные. Состоят из слабого основания и его соли. Например, аммиачная буферная система (NH3×H2O + NH4Cl).

3. Солевые. Состоят из кислой и средней соли или двух кислых солей. Например, карбонатная буферная система (NaHCO3+Na2CO3), фосфатная буферная система (КН2PO4 + К2НPO4).

4. Аминокислотные и белковые. Если суммарный заряд молекулы аминокислоты или белка равен нулю (изоэлектрическое состояние), то растворы этих соединений не являются буферными. Их буферное действие начинает проявляться тогда, когда к ним добавляют некоторое количество кислоты или щелочи. Тогда часть белка (аминокислоты) переходит из изоэлектрического состояния в форму “белок-кислота” или соответственно в форму “белок-основание”. Образуется смесь двух форм белка: а) слабая “белок-кислота” + соль этой слабой кислоты; б) слабое “белок- основание” + соль этого слабого основания:

где R - макромолекулярный остаток белка.

Механизм действия буферных систем:

 

1. Разбавление. При разбавлении водой происходит уменьшение концентрации обоих компонентов в буферной системе в одинаковой степени, поэтому величина их соотношения не изменится. рК(кислоты) и рК(основания) являются постоянными при данной температуре и не зависят от разбавления. Действительно, одновременное понижение концентраций кислоты и соли в ацетатной буферной системе от 0,1М до 0,001М при разбавлении водой изменяет рН буферного раствора с 4,63 до 4,73 (это ничтожное изменение рН при разбавлении буферного раствора в 100 раз обусловлено некоторым изменением коэффициента активности соли). Следовательно, разбавление в конечном итоге мало изменяет рН буферных систем.

2. Добавление кислот и оснований. При добавлении небольших количеств сильных кислот или оснований рН буферных систем изменяется незначительно. Например, рассмотрим ацетатный буфер:

СН3СООН / СН3СОО

кислотный компонент – основной компонент–

слабая кислота сопряженное основание

 

а) При добавлении к ацетатному буферу небольшого количества HCl, происходит взаимодействие ионов Н+ с основным компонентом буферного раствора:

Н+ + СН3СОО ⇄ СН3СООН.

Степень диссоциации СН3СООН мала и концентрация [H+] практически не меняется. рН буферного раствора уменьшится, но незначительно.

Таким образом, если к ацетатному буферу добавить Х моль/л HCl, то уравнение для расчета рН буферной системы принимает вид:

рН = рК(кислоты) + lg

б) При добавлении небольшого количества NaOH, – ионы нейтрализуются кислотным компонентом буферного раствора:

+ СН3СООН ⇄ СН3СОО + Н2О.

В результате этого, добавленное сильное основание заменяется эквивалентным количеством слабого сопряженного основания (СН3СОО), которое в меньшей степени влияет на реакцию cреды. рН буферного раствора увеличивается, но незначительно.

Таким образом, если к ацетатному буферу добавить У моль/л NaOH, то уравнение для расчета рН буферной системы принимает вид:

рН = рК(кислоты) + lg

 


1 | 2 | 3 | 4 | 5 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.005 сек.)