|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Основные теоремы дифференциального исчисленияТеорема Ферма. Пусть функция определена и дифференцируема на интервале (а,в) и в некоторой точке принимает наибольшее или наименьшее значение. Тогда =0. Док-во. Пусть - наибольшее значение функции на интервале (а,в). Тогда при : , . При : , . Если функция по условию дифференцируема в т. , то указанные выше пределы должны совпадать. А это возможно лишь при =0.▲
Геометрически теорема Ферма означает, что в точках наибольшего или наименьшего значений дифференцируемой функции касательная к графику функции имеет нулевой угловой коэффициент, т.е. параллельна оси Ох.
Теорема Ролля (о среднем). Пусть функция : 1) непрерывна на отрезке ; 2) дифференцируема на интервале ; 3) принимает на концах интервала равные значения: f(a)=f(b). Тогда существует т. , такая, что . Док-во. По второй теореме Вейерштрасса непрерывная на отрезке функция достигает на нем своего наибольшего и наименьшего значений. Если оба эти значения достигаются на концах отрезка, а по условию они равны, следовательно, функция постоянна и ее производная равна нулю. Если хотя бы одно из этих значений достигается внутри отрезка, то по теореме Ферма. ▲ Замечание. Если f(a)=f(b) =0, то теорему Ролля можно сформулировать так: между двумя последовательными нулями дифференцируемой функции имеется хотя бы один нуль производной.
Теорема Лагранжа (о среднем). Пусть функция : 1) непрерывна на отрезке ; 2) дифференцируема на интервале . Тогда существует т. , такая, что . (или , эта формула называется формулой конечных приращений). Док-во. Введем новую функцию . Она непрерывна на отрезке , дифференцируема на интервале и g(a)=g(b). Т.о., эта функция удовлетворяет условиям теоремы Ролля. Следовательно, существует т. , такая, что или: , откуда . ▲ Геометрический смысл теоремы Лагранжа состоит в следующем. Производная - это тангенс наклона касательной в точке с. А отношение - это тангенс наклона секущей, проходящей через точки А и В. Тогда теорема означает, что на интервале (а,в) найдется точка с, в которой касательная параллельна секущей АВ.
Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.004 сек.) |