АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Основные теоремы дифференциального исчисления

Читайте также:
  1. I. ОСНОВНЫЕ ФАКТОРЫ
  2. I. Типичные договоры, основные обязанности и их классификация
  3. II. Основные моменты содержания обязательства как правоотношения
  4. II. Основные направления работы с персоналом
  5. II. Основные принципы и правила служебного поведения государственных (муниципальных) служащих
  6. II. ОСНОВНЫЕ ЦЕЛИ И ЗАДАЧИ КОНЦЕПЦИИ
  7. II. Основные цели и задачи Программы, срок и этапы ее реализации, целевые индикаторы и показатели
  8. III. Основные мероприятия, предусмотренные Программой
  9. III. Основные требования, предъявляемые к документам
  10. Ms dos, его основные условия.
  11. V1: Основные аспекты организации коммерческой деятельности и этапы ее развития
  12. А. Основные положения

Теорема Ферма. Пусть функция определена и дифференцируема на интервале (а,в) и в некоторой точке принимает наибольшее или наименьшее значение. Тогда =0.

Док-во. Пусть - наибольшее значение функции на интервале (а,в). Тогда при : , .

При : , .

Если функция по условию дифференцируема в т. , то указанные выше пределы должны совпадать. А это возможно лишь при =0.▲

 

Геометрически теорема Ферма означает, что в точках наибольшего или наименьшего значений дифференцируемой функции касательная к графику функции имеет нулевой угловой коэффициент, т.е. параллельна оси Ох.

 

 

Теорема Ролля (о среднем). Пусть функция :

1) непрерывна на отрезке ;

2) дифференцируема на интервале ;

3) принимает на концах интервала равные значения: f(a)=f(b).

Тогда существует т. , такая, что .

Док-во. По второй теореме Вейерштрасса непрерывная на отрезке функция достигает на нем своего наибольшего и наименьшего значений. Если оба эти значения достигаются на концах отрезка, а по условию они равны, следовательно, функция постоянна и ее производная равна нулю. Если хотя бы одно из этих значений достигается внутри отрезка, то по теореме Ферма. ▲

Замечание. Если f(a)=f(b) =0, то теорему Ролля можно сформулировать так: между двумя последовательными нулями дифференцируемой функции имеется хотя бы один нуль производной.

 

Теорема Лагранжа (о среднем). Пусть функция :

1) непрерывна на отрезке ;

2) дифференцируема на интервале .

Тогда существует т. , такая, что .

(или , эта формула называется формулой конечных приращений).

Док-во. Введем новую функцию . Она непрерывна на отрезке , дифференцируема на интервале и g(a)=g(b). Т.о., эта функция удовлетворяет условиям теоремы Ролля. Следовательно, существует т. , такая, что или:

, откуда . ▲

Геометрический смысл теоремы Лагранжа состоит в следующем.

Производная - это тангенс наклона касательной в точке с.

А отношение - это тангенс наклона секущей, проходящей через точки А и В. Тогда теорема означает, что на интервале (а,в) найдется точка с, в которой касательная параллельна секущей АВ.

 


Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.004 сек.)