|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Граничные условия для B и H
Почти все вещества подчиняются зависимости: могут быть разбиты на два класса: – парамагнетики, в которых намагниченность вещества увеличивает суммарное магнитное поле; , они втягиваются в область сильного неоднородного магнитного поля. – диамагнетики, в которых намагниченность уменьшает суммарное поле; диамагнетики выталкиваются из области сильного неоднородного поля. В результате можно получить взаимосвязь векторов В и Н. μ – магнитная восприимчивость среды:
Найдем соотношение между магнитной индукцией B и напряженностью H магнитного поля в некоторой точке А на границе двух сред. Проведем в точке А единичные векторы: – по касательной вдоль границы раздела сред и n – по нормали к границе, направленной от первой среды ко второй. Построим вблизи точки А небольшой замкнутый прямоугольный контур L, две стороны которого параллельны вектору и равны , а две - вектору n и равны . Предположим, что по границе раздела внутри контура вблизи точки А не текут макротоки. Из теоремы о циркуляции вектора напряженности магнитного поля следует, что Это равенство должно выполняться при любом значении и тогда в пределе при получаем: Здесь H1 и H2 - проекции напряженности H на направление касательного орта в точке А. Поскольку последнее равенство в должно выполняться при произвольном , находим Таким образом, касательная к поверхности раздела двух сред составляющая напряженности магнитного поля не изменяется при переходе из одной среды в другую. Второе условие получим с помощью теоремы Гаусса для магнитной индукции B. Возьмем охватывающую окрестность точки А небольшую цилиндрическую поверхность S, основания S которой параллельны границе раздела и лежат по разные стороны от нее, а образующая параллельна вектору нормали n. По теореме Остроградского-Гаусса имеем для потока В через всю поверхность S.
Это равенство должно выполняться: при любом значении высоты цилиндра h и в пределе получим: т.е. при переходе через границу раздела двух сред, нормальная составляющая вектора магнитной индукции не изменяется.
Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.) |