|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Основные предпосылки регрессионного анализа. Теорема Гаусса-МарковаВ основе корреляционно-регрессионного анализа лежит взаимосвязь всех явлений природы и общества. Объем продукции предприятия связан с численностью работников, стоимостью производственных фондов, мощностью двигателей, запасами сырья, величиной резервов финансовых ресурсов и еще многими другими признаками. Управление предприятием невозможно без прогнозирования его развития, которое в свою очередь основано на знании закономерностей, связей между явлениями и их признаками. Опр. Корреляционно-регрессионным анализом называется многообразие методов исследования параметров генеральной совокупности, распределенной по нормальному закону. Предпосылки корреляционно-регрессионного анализа: 1) Наличие данных по достаточно большой совокупности явлений. Обычно считается, что число наблюдений должно быть в 5-6 раз, случи в 10 р., чем число факторов. 2) Качественная однородность изучаемых единиц. 3) Проверка на однородность и нормальность распределения. На однородность по коэффициенту корреляционности на нормальность по правилу трех сигм. 4) Включаемые в исследование факторы должны быть независимы друг от друга, т.к. наличие тесной связи между ними свидетельствует о том, что они характеризуют одни и те же стороны изучаемого явления и дублируют друг друга. Корреляционный анализ позволяет с помощью выборки делать выводы о степени статистической связи между признаками. В качестве мер связи между признаками чаще всего используется принцип ковариации и принцип сопряженности. Принцип ковариации: наличие связи между переменными утверждается, если увеличение значения одной переменной сопровождается устойчивым увеличением или уменьшением другой переменной. Принцип сопряженности: эта группа мер связи направлена на выяснение следующего факта – появляются ли некоторые значения одного признака одновременно с определенными значениями другого чаще, чем это можно объяснить случайным стечением обстоятельств. Задачи корреляционно-регрессионного анализа сводятся к измерению тесноты известной связи между варьирующими признаками, определению неизвестных причинных связей (причинный характер которых должен быть выяснен с помощью теоретического анализа) и оценки факторов, оказывающих наибольшее влияние на результативный признак. Изучение корреляционной связи имеет 2 цели: 1) Измерение параметров уравнения, выражающего связь средних значений зависимой переменной со значениями независимой переменной; 2) Измерение тесноты связи двух или большего числа признаков между собой. Основным методом решения задачи нахождения параметров уравнения связи является метод наименьших квадратов (МНК), разработанный К.Ф.Гауссом (1777-1855), а был предложен Лежандром. В простейшем случае он формулируется так: Результат yi повторяющихся измерений можно рассматривать как сумму неизвестной величины x и ошибки измерения ej:
Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.002 сек.) |