АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Основные предпосылки регрессионного анализа. Теорема Гаусса-Маркова

Читайте также:
  1. I. ОСНОВНЫЕ ФАКТОРЫ
  2. I. Предпосылки быстрого экономического роста
  3. I. Типичные договоры, основные обязанности и их классификация
  4. II. Основные моменты содержания обязательства как правоотношения
  5. II. Основные направления работы с персоналом
  6. II. Основные принципы и правила служебного поведения государственных (муниципальных) служащих
  7. II. ОСНОВНЫЕ ЦЕЛИ И ЗАДАЧИ КОНЦЕПЦИИ
  8. II. Основные цели и задачи Программы, срок и этапы ее реализации, целевые индикаторы и показатели
  9. III. Основные мероприятия, предусмотренные Программой
  10. III. Основные требования, предъявляемые к документам
  11. Ms dos, его основные условия.
  12. V1: Основные аспекты организации коммерческой деятельности и этапы ее развития

В основе корреляционно-регрессионного анализа лежит взаимосвязь всех явлений природы и общества. Объем продукции предприятия связан с численностью работников, стоимостью производственных фондов, мощностью двигателей, запасами сырья, величиной резервов финансовых ресурсов и еще многими другими признаками.

Управление предприятием невозможно без прогнозирования его развития, которое в свою очередь основано на знании закономерностей, связей между явлениями и их признаками.

Опр. Корреляционно-регрессионным анализом называется многообразие методов исследования параметров генеральной совокупности, распределенной по нормальному закону.

Предпосылки корреляционно-регрессионного анализа:

1) Наличие данных по достаточно большой совокупности явлений. Обычно считается, что число наблюдений должно быть в 5-6 раз, случи в 10 р., чем число факторов.

2) Качественная однородность изучаемых единиц.

3) Проверка на однородность и нормальность распределения. На однородность по коэффициенту корреляционности на нормальность по правилу трех сигм.

4) Включаемые в исследование факторы должны быть независимы друг от друга, т.к. наличие тесной связи между ними свидетельствует о том, что они характеризуют одни и те же стороны изучаемого явления и дублируют друг друга.

Корреляционный анализ позволяет с помощью выборки делать выводы о степени статистической связи между признаками.

В качестве мер связи между признаками чаще всего используется принцип ковариации и принцип сопряженности.

Принцип ковариации: наличие связи между переменными утверждается, если увеличение значения одной переменной сопровождается устойчивым увеличением или уменьшением другой переменной.

Принцип сопряженности: эта группа мер связи направлена на выяснение следующего факта – появляются ли некоторые значения одного признака одновременно с определенными значениями другого чаще, чем это можно объяснить случайным стечением обстоятельств.

Задачи корреляционно-регрессионного анализа сводятся к измерению тесноты известной связи между варьирующими признаками, определению неизвестных причинных связей (причинный характер которых должен быть выяснен с помощью теоретического анализа) и оценки факторов, оказывающих наибольшее влияние на результативный признак.

Изучение корреляционной связи имеет 2 цели:

1) Измерение параметров уравнения, выражающего связь средних значений зависимой переменной со значениями независимой переменной;

2) Измерение тесноты связи двух или большего числа признаков между собой.

Основным методом решения задачи нахождения параметров уравнения связи является метод наименьших квадратов (МНК), разработанный К.Ф.Гауссом (1777-1855), а был предложен Лежандром. В простейшем случае он формулируется так: Результат yi повторяющихся измерений можно рассматривать как сумму неизвестной величины x и ошибки измерения ej:

 

 


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.002 сек.)