|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Виды связи между переменными
Зависимая переменная не чувствительна к изменениям независимой. Монотонно возрастающая зависимость: увеличению значений независимой переменной соответствует изменение зависимой переменной. Монотонно убывающая зависимость: увеличению значений независимой переменной соответствует уменьшение уровня зависимой переменной.
Аналитическая форма зависимости между изучаемой парой признаков (регрессионная функция) определяется с помощью следующих методов: 1) на основе визуальной оценки характера связи. На линей$ ном графике по оси абсцисс откладываются значения фактор$ ного (независимого) признака x, по оси ординат — значения результативного признака y. На пересечении соответствую$ щих значений отмечаются точки. Полученный точечный гра$ фик в указанной системе координат называется корреляцион$ ным полем. При соединении полученных точек получается эмпирическая линия, по виду которой можно судить не только о наличии, но и о форме зависимости между изучаемыми пе$ ременными; модели потребительского и сберегательного потребления; Статистические и математические модели экономических явлений и процессов определяются спецификой той или иной области экономических исследований. Так, в экономике качества модели, на которых основаны статистические методы сертификации и управления качеством — модели статистического приемочного контроля, статистического контроля (статистического регулирования) технологических процессов (обычно с помощью контрольных карт Шухарта или кумулятивных контрольных карт), планирования экспериментов, оценки и контроля надежности и другие — используют как технические, так и экономические характеристики, а потому относятся к эконометрике, равно как и многие модели теории массового обслуживания (теории очередей). Экономический эффект только от использования статистического контроля в промышленности США оценивается как 0,8 % валового национального продукта (20 миллиардов долларов в год), что существенно больше, чем от любого иного экономико-математического или эконометрического метода. С помощью эконометрических методов следует оценивать различные величины и зависимости, используемые при построении имитационных моделей процессов налогообложения, в частности, функции распределения предприятий по различным параметрам налоговой базы. При анализе потоков платежей необходимо использовать эконометрические модели инфляционных процессов, поскольку без оценки индекса инфляции невозможно вычислить дисконт-функцию, а потому нельзя установить реальное соотношение авансовых и «итоговых» платежей. Прогнозирование сбора налогов может осуществляться с помощью системы временных рядов — на первом этапе по каждому одномерному параметру отдельно, а затем — с помощью некоторой линейной эконометрической системы уравнений, дающей возможность прогнозировать векторный параметр с учетом связей между координатами и лагов, то есть влияния значений переменных в определенные прошлые моменты времени. Возможно, более полезными окажутся имитационные модели более общего вида, основанные на интенсивном использовании современной вычислительной техники. 1) постановочный этап, в процессе осуществления которого определяются конечные цели и задачи исследования, а также совокупность включённых в модель факторных и результативных экономических переменных. При этом включение в эконометрическую модель той или иной переменной должно быть теоретически обоснованно и не должно быть слишком большим. Между факторными переменными не должно быть функциональной или тесной корреляционной связи, потому что это приводит к наличию в модели мультиколлинеарности и негативно сказывается на результатах всего процесса моделирования; 2) априорный этап, в процессе осуществления которого проводится теоретический анализ сущности исследуемого процесса, а также формирование и формализация известной до начала моделирования (априорной) информации и исходных допущений, касающихся в частности природы исходных статистических данных и случайных остаточных составляющих в виде ряда гипотез; 3) этап параметризации (моделирования), в процессе осуществления которого выбирается общий вид модели и определяется состав и формы входящих в неё связей, т. е. происходит непосредственно моделирование. К основным задачам этапа параметризации относятся: а) выбор наиболее оптимальной функции зависимости результативной переменной от факторных переменных. При возникновении ситуации выбора между нелинейной и линейной функциями зависимости, предпочтение всегда отдаётся линейной функции, как наиболее простой и надёжной; б) задача спецификации модели, в которую входят такие подзадачи, как аппроксимация математической формой выявленных связей и соотношений между переменными, определение результативных и факторных переменных, формулировка исходных предпосылок и ограничений модели. 4) информационный этап, в процессе осуществления которого происходит сбор необходимых статистических данных, а также анализируется качество собранной информации; 5) этап идентификации модели, в ходе осуществления которого происходит статистический анализ модели и оцененивание неизвестных параметров. Данный этап непосредственно связан с проблемой идентифицируемостимодели, т. е. ответа на вопрос «Возможно ли восстановить значения неизвестных параметров модели по имеющимся исходным данным в соответствии с решением, принятым на этапе параметризацииβ». После положительного ответа на этот вопрос решается проблема идентификации модели, т. е. реализуется математически корректная процедура оценивания неизвестных параметров модели по имеющимся исходным данным; 6) этап оценки качества модели, в ходе осуществления которого проверяется достоверность и адекватность модели, т. е. определяется, насколько успешно решены задачи спецификации и идентификации модели, какова точность расчётов, полученных на её основе. Построенная модель должна быть адекватна реальному экономическому процессу. Если качество модели является неудовлетворительным, то происходит возврат ко второму этапу моделирования; 7) этап интерпретации результатов моделирования. №5 Эконометрический анализ производственного процесса Рассматривая эконометрическое исследование в целом, в нем можно выделить следующие этапы: 1. Постановка проблемы, т. е. определение цели и задач исследования, выделение зависимых (уj) и независимых (xk) экономических переменных на основе качественного анализа изучаемых взаимосвязей методами экономической теории. 2. Сбор необходимых исходных данных. 3. Построение эконометрической модели и оценка ее адекватности и степени соответствия исходным данным. 4. Использование модели для целей анализа и прогнозирования параметров исследуемого явления. 5. Качественная и количественная интерпретация полученных на основе модели результатов. 6. Практическое использование результатов. В процессе экономической интерпретации результатов необходимо ответить на следующие вопросы: 12 – являются ли статистически значимыми объясняющие факторы, важные с теоретической точки зрения? – соответствуют ли оценки параметров модели качественным представлениям?
№6. Парный регрессионный анализ Регрессией в теории вероятностей и математической статистике принято называть зависимость среднего значения какой-либо величины (y) от некоторой другой величины или от нескольких величин (хi). Парной регрессией называется модель, выражающая зависимость среднего значения зависимой переменной y от одной независимой переменной х yˆ = f (x), где у – зависимая переменная (результативный признак); х – независимая, объясняющая переменная (признак–фактор). Парная регрессия применяется, если имеется доминирующий фактор, обуславливающий большую долю изменения изучаемой объясняемой переменной, который и используется в качестве объясняющей переменной. Множественной регрессией называют модель, выражающую зависимость среднего значения зависимой переменной y от нескольких независимых переменных х1, х2, …, хp ŷ = f (x1,x2,...,xp). Классическая нормальная модель линейной множественной регрессии. По виду аналитической зависимости различают линейные и нелинейные регрессии. Линейная парная регрессия описывается уравнением: ŷ=a+bx Если между экономическими явлениями существуют нелинейные соотношения, то они выражаются с помощью соответствующих нелинейных функций: например, равносторонней гиперболы , параболы второй степени и д.р. №7.. Линейная парная регрессия. Определение параметров уравнения регрессии Линейная парная регрессия описывается уравнением: ŷ=a+bx, согласно которому изменение Δy переменной y прямопропорционально изменению Δx переменной x (Δy = b·Δx). Для оценки параметров a и b уравнения регрессии (2.6) воспользуемся методом наименьших квадратов (МНК). При определенных предположениях относительно ошибки ε МНК дает наилучшие оценки параметров линейной модели. Модель парной линейной регрессии: y = a +b*x +u (y- зависимая переменная, a +b*x – неслучайная составляющая, х – независимая переменная, u- случайная составляющая)
Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.006 сек.) |