АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Статистические гипотезы и их проверка

Читайте также:
  1. Актуализация опорных знаний. Проверка д/з.
  2. Взаимная проверка подлинности пользователей.
  3. Вопрос 25. Проверка знаний Правил. Виды проверок. Периодичность проведения проверок.
  4. Вопрос 28. Проверка знаний Правил. Виды проверок. Периодичность проведения проверок.
  5. Выбор аппаратуры защиты отходящих линий и проверка её на срабатывание при однофазном коротком замыкании.
  6. Выездная налоговая проверка (ст 89 НК)
  7. Выездная налоговая проверка, ее назначение и порядок проведения.
  8. Выездная налоговая проверка. Порядок проведения (ст. 89).
  9. Гипотезы происхождения нефти
  10. Д) Проверка устойчивости колонны как единого стержня в плоскости рамы
  11. Для самостоятельной работы (самопроверка)
  12. Доверительные интервалы для коэффициентов: реальные статистические данные

Статистическая гипотеза (statistical hypothesys) — это определённое предположение о распределении вероятностей, лежащем в основе наблюдаемой выборки данных.

Проверка статистической гипотезы (testing statistical hypotheses) — это процесс принятия решения о том, противоречит ли рассматриваемая статистическая гипотеза наблюдаемой выборке данных.

Статистический тест или статистический критерий — строгое математическое правило, по которому принимается или отвергается статистическая гипотеза.

Методика проверки статистических гипотез

Пусть задана случайная выборка — последовательность объектов из множества . Предполагается, что на множестве существует некоторая неизвестная вероятностная мера .

Методика состоит в следующем.

1. Формулируется нулевая гипотеза о распределении вероятностей на множестве . Гипотеза формулируется исходя из требований прикладной задачи. Чаще всего рассматриваются две гипотезы — основная или нулевая и альтернативная . Иногда альтернатива не формулируется в явном виде; тогда предполагается, что означает «не ». Иногда рассматривается сразу несколько альтернатив. В математической статистике хорошо изучено несколько десятков «наиболее часто встречающихся» типов гипотез, и известны ещё сотни специальных вариантов и разновидностей. Примеры приводятся ниже.

2. Задаётся некоторая статистика (функция выборки) , для которой в условиях справедливости гипотезы выводится функция распределения и/или плотность распределения . Вопрос о том, какую статистику надо взять для проверки той или иной гипотезы, часто не имеет однозначного ответа. Есть целый ряд требований, которым должна удовлетворять «хорошая» статистика . Вывод функции распределения при заданных и является строгой математической задачей, которая решается методами теории вероятностей; в справочниках приводятся готовые формулы для ; в статистических пакетах имеются готовые вычислительные процедуры.

3. Фиксируется уровень значимости — допустимая для данной задачи вероятность ошибки первого рода, то есть того, что гипотеза на самом деле верна, но будет отвергнута процедурой проверки. Это должно быть достаточно малое число . На практике часто полагают .

4. На множестве допустимых значений статистики выделяется критическое множество наименее вероятных значений статистики , такое, что . Вычисление границ критического множества как функции от уровня значимости является строгой математической задачей, которая в большинстве практических случаев имеет готовое простое решение.

5. Собственно статистический тест (статистический критерий) заключается в проверке условия:

§ если , то делается вывод «данные противоречат нулевой гипотезе при уровне значимости ». Гипотеза отвергается.

§ если , то делается вывод «данные не противоречат нулевой гипотезе при уровне значимости ». Гипотеза принимается.

Итак, статистический критерий определяется статистикой и критическим множеством , которое зависит от уровня значимости .

Замечание. Если данные не противоречат нулевой гипотезе, это ещё не значит, что гипотеза верна. Тому есть две причины.

§ По мере увеличения длины выборки нулевая гипотеза может сначала приниматься, но потом выявятся более тонкие несоответствия данных гипотезе, и она будет отвергнута. То есть многое зависит от объёма данных; если данных не хватает, можно принять даже самую неправдоподобную гипотезу.

§ Выбранная статистика может отражать не всю информацию, содержащуюся в гипотезе . В таком случае увеличивается вероятность ошибки второго рода — нулевая гипотеза может быть принята, хотя на самом деле она не верна. Допустим, например, что = «распределение нормально»; = «коэффициент асимметрии»; тогда выборка с любым симметричным распределением будет признана нормальной. Чтобы избегать таких ошибок, следует пользоваться более мощными критериями.

 


Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.)