|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
B7 (повышенный уровень, время – 2 мин)Тема: Кодирование чисел. Системы счисления. Что нужно знать: · принципы кодирования чисел в позиционных системах счисления · 4 3 2 1 0 ← разряды 1 2 3 4 5N = 1·N4 + 2·N3 + 3·N2 + 4·N1 + 5·N0 · последняя цифра записи числа в системе счисления с основанием · две последние цифры – это остаток от деления на Пример задания: Решите уравнение Решение: 1) удобнее всего перевести все числа в десятичную систему, решить уравнение и результат перевести в шестеричную систему 2) получаем 3) уравнение приобретает вид 4) переводим 15 в шестеричную систему счисления: 5) ответ: 23. Ещё пример задания: Запись десятичного числа в системах счисления с основаниями 3 и 5 в обоих случаях имеет последней цифрой 0. Какое минимальное натуральное десятичное число удовлетворяет этому требованию? Решение: 6) если запись числа в системе счисления с основанием N заканчивается на 0, то это число делится на N нацело 7) поэтому в данной задаче требуется найти наименьшее натуральное число, которое делится одновременно на 3 и на 5, то есть, делится на 15 8) очевидно, что это число 15. Ещё пример задания: Запись числа 6710 в системе счисления с основанием N оканчивается на 1 и содержит 4 цифры. Укажите основание этой системы счисления N. Решение: 9) поскольку запись в системе счисления с основанием N заканчивается на 1, то остаток от деления числа 67 на N равен 1, то есть при некотором целом 10) следовательно, основание N – это делитель числа 66 11) с другой стороны, запись числа содержит 4 цифры, то есть 12) выпишем кубы и четвертые степени первых натуральных чисел, которые являются делителями числа 66: 13) видим, что из этого списка только для числа N = 3 выполняется условие 14) таким образом, верный ответ – 3. 15) можно сделать проверку, переведя число 67 в троичную систему 6710 = 21113 Еще пример задания: Запись числа 38110 в системе счисления с основанием N оканчивается на 3 и содержит 3 цифры. Укажите наибольшее возможное основание этой системы счисления N. Решение: 1) поскольку запись в системе счисления с основанием N заканчивается на 3, то остаток от деления числа 381 на N равен 3, то есть при некотором целом 2) следовательно, основание N – это делитель числа 3) с другой стороны, запись числа содержит 3 цифры, то есть 4) неравенство 5) неравенство 6) таким образом, · 9, при · 14, при · 18, при 7) наибольшим из приведенных чисел – это 18 (можно было сразу искать подбором наибольший делитель числа 378, начиная с 19 «вниз», на уменьшение) 8) таким образом, верный ответ – 18. Еще пример задания: Укажите через запятую в порядке возрастания все десятичные числа, не превосходящие 25, запись которых в системе счисления с основанием четыре оканчивается на 11? Общий подход: · вспомним алгоритм перевода числа из десятичной системы в систему с основанием · в данном случае · потому задача сводится к тому, чтобы определить все числа, которые меньше или равны 25 и дают остаток 5 при делении на 16 Решение (вариант 1, через десятичную систему): 1) общий вид чисел, которые дают остаток 5 при делении на 16: где 2) среди всех таких чисел нужно выбрать те, что меньше или равны 25 («не превосходят 25»); их всего два: 5 (при 3) таким образом, верный ответ – 5, 21.
Решение (вариант 2, через четверичную систему, предложен О.А. Тузовой): 1) переведем 25 в четверичную систему счисления: 25 = 1214, все интересующие нас числа не больше этого значения 2) из этих чисел выделим только те, которые заканчиваются на 11, таких чисел всего два: 3) таким образом, верный ответ – 5, 21.
Еще пример задания: Укажите через запятую в порядке возрастания все основания систем счисления, в которых запись числа 23 оканчивается на 2. Общий подход: · здесь обратная задача – неизвестно основание системы счисления, мы обозначим его через · поскольку последняя цифра числа – 2, основание должно быть больше 2, то есть · вспомним алгоритм перевода числа из десятичной системы в систему с основанием Решение: 1) итак, нужно найти все целые числа
где 2) сложность в том, что и 3) из формулы (*) получаем 4) в этой задаче есть только три таких делителя: 5) таким образом, верный ответ – 3, 7, 21.
Еще пример задания: Укажите через запятую в порядке возрастания все основания систем счисления, в которых запись числа 31 оканчивается на 11. Общий подход: · неизвестно основание системы счисления, мы обозначим его через · пока будем считать, что запись числа 31 в системе с основанием 2 1 0 ← разряды 31 = k 1 1N = k·N2 + N1 + N0 = k·N2 + N + 1 · можно показать, что при большем количестве разрядов эта формула также верна, то есть, число 31 можно представить как 4 3 2 1 0 ← разряды 31 = k4 k3 k2 1 1N = k4·N4 + k3·N3 + k2·N2 + N1 + N0 = k·N2 + N + 1 для Решение: 1) итак, нужно найти все целые числа
где 2) сложность в том, что и 3) из формулы (**) получаем 4) выпишем все делители числа 30, большие или равные 2: 2, 3, 5, 6, 10, 15, 30 5) из всех этих делителей только для 2, 3, 5 и 30 значение 6) таким образом, верный ответ – 2, 3, 5, 30. Еще пример задания: Укажите, сколько всего раз встречается цифра 2 в записи чисел 10, 11, 12, …, 17 в системе счисления с основанием 5. Решение (вариант 1): 1) запишем первое и последнее число в заданном диапазоне в системе счисления с основанием 5: 10 = 205, 17 = 325 . 2) заметим, что оба они содержат цифру 2, так что, 2 цифры мы уже нашли 3) между 205 и 325 есть еще числа 215, 225, 235, 245, 305, 315. 4) в них 5 цифр 2 (в числе 225 – сразу две двойки), поэтому всего цифра 2 встречается 7 раз 5) таким образом, верный ответ – 7.
Решение (вариант 2): 1) переведем все указанные числа в систему счисления с основанием 5: 10 = 205, 11 = 215, 12 = 225, 13 = 235, 14 = 245, 15 = 305, 16 = 315, 17 = 325 . 2) считаем цифры 2 – получается 7 штук 3) таким образом, верный ответ – 7. Еще пример задания: Укажите наименьшее основание системы счисления, в которой запись числа 30 трехзначна. Решение: 1) обозначим через 2) вспомним алгоритм перевода числа из системы счисления с основанием 3) поскольку запись трехзначная, 4) с другой стороны, четвертой цифры нет, то есть, в третьем разряде – ноль, поэтому 5) объединяя последние два условия, получаем, что искомое основание 6) учитывая, что 7) минимальное из этих значений – 4 8) таким образом, верный ответ – 4. Решение (без подбора): 1) выполним п.1-4 так же, как и в предыдущем варианте решения 2) найдем первое целое число, куб которого больше 30; это 4, так как 3) проверяем второе неравенство: 4) таким образом, верный ответ – 4. Еще пример задания: Укажите через запятую в порядке возрастания все десятичные числа, не превосходящие 30, запись которых в системе счисления с основанием 5 начинается на 3? Решение (вариант 1): 1) нас интересуют числа от 1 до 30 2) сначала определим, сколько цифр может быть в этих числах, записанных в системе счисления с основанием 5 3) поскольку 4) рассмотрим трехзначные числа, начинающиеся на 3 в системе с основанием 5: все они заведомо не меньше 5) таким образом, остается рассмотреть только однозначные и двухзначные числа 6) есть всего одно однозначное число, начинающееся на 3, это 3 7) общий вид всех двузначных чисел, начинающихся на 3 в системе с основанием 5: где 8) используя эту формулу, находим интересующие нас двузначные числа – 15, 16, 17, 18 и 19 9) таким образом, верный ответ – 3, 15, 16, 17, 18, 19. Решение (вариант 2, предложен Сенькиной Т.С., г. Комсомольск-на-Амуре): 1) нас интересуют числа от 1 до 30; сначала определим, сколько цифр может быть в пятеричной записи эти чисел 2) поскольку 3) есть всего одно однозначное число, начинающееся на 3, это 3 4) выпишем все пятеричные двузначные числа, которые начинаются с 3, и переведем их в десятичную систему: 305 = 15, 315 = 16, 325 = 17, 335 = 18 и 345 = 19 5) таким образом, верный ответ – 3, 15, 16, 17, 18, 19. Еще пример задания: Укажите через запятую в порядке возрастания все основания систем счисления, в которых запись числа 71 оканчивается на 13. Решение (1 способ): 1) Если число в системе с основанием а) б) это число можно представить в виде 2) определим наибольшее возможное 3) очевидно, что чем меньше здесь мы подставили 4) остается перебрать все допустимые значения
относительно 5) получаем а) при б) при в) при 6) таким образом, верный ответ: 4, 68. Решение (2 способ, М.В. Кузнецова и её ученики): 1) запись числа71 в системе с основанием 2) таким образом, искомые основания – делители числа 68; остается выбрать из них те, которые соответствуют другим условиям задачи 3) среди чисел, оканчивающихся на 13 в системе счисления с основанием так что первый ответ: 68. 4) остальные числа, окачивающиеся в этой системе на 13, имеют не менее 3-х знаков ( 5) поэтому 6) по условию в записи числа есть цифра 3, поэтому 7) итак: 8) таким образом, верный ответ: 4, 68.
Еще пример задания: Укажите через запятую в порядке возрастания все основания систем счисления, в которых запись числа 86 оканчивается на 22. Решение (1 способ): 1) Если число в системе с основанием а) б) это число можно представить в виде 2) определим наибольшее возможное 3) очевидно, что чем меньше здесь мы подставили 4) остается перебрать все допустимые значения
относительно 5) получаем а) при б) при в) при г) при 6) таким образом, верный ответ: 6, 42. Решение (2 способ, М.В. Кузнецова и её ученики): 1) запись числа 86 в системе с основанием 2) таким образом, искомые основания – делители числа 84; остается выбрать из них те, которые соответствуют другим условиям задачи 3) среди чисел, оканчивающихся на 22 в системе счисления с основанием так что первый ответ: 42. 4) остальные числа, окачивающиеся в этой системе на 22, имеют не менее 3-х знаков ( 5) поэтому 6) по условию в записи числа есть цифра 2, поэтому 7) итак: 8) переводя число 86 в системы счисления с основаниями
9) таким образом, верный ответ: 6, 42. Еще пример задания: Укажите через запятую в порядке возрастания все основания систем счисления, в которых запись числа 94 начинается на 23. Решение: 1) Из условия сразу видно, что искомое основание не меньше 4 (в записи есть цифра 3). 2) Если запись числа 94 в некоторой системе счисления с основанием 3) Предположим, что число четырехзначное. Минимальное допустимое четырехзначное число – 2300x, где 4) На основании (2) и (3) делаем вывод, что число трехзначное, то есть 5) Максимальное 6) Если мы знаем 7) Минимальное 8) Таким образом, верный ответ: 6. Еще пример задания: Найти сумму восьмеричных чисел 178 +1708 +17008 +...+17000008, перевести в 16-ую систему счисления. Найдите в записи числа, равного этой сумме, третью цифру слева. Решение: 1) Несложно выполнить прямое сложение восьмеричных чисел, там быстро обнаруживается закономерность: 178 + 1708 = 2078 178 + 1708 + 17008 = 21078 178 + 1708 + 17008 + 170008 = 211078 178 + 1708 + 17008 + 170008 + 1700008 = 2111078 178 + 1708 + 17008 + 170008 + 1700008 + 17000008 = 21111078 2) Переведем последнюю сумму через триады в двоичный код (заменяем каждую восьмеричную цифру на 3 двоичных): 100010010010010001112 3) Теперь разбиваем цепочку на тетрады (группы из 4-х двоичных цифр), начиная справа, и каждую тетраду представляем в виде шестнадцатеричной цифры 100010010010010001112 8 9 2 4 7 4) Таким образом, верный ответ (третья цифра слева): 2. Еще пример задания: Чему равно наименьшее основание позиционной системы счисления Решение: 1) Поскольку в левой и в правой частях есть цифра 5, оба основания больше 5, то есть перебор имеет смысл начинать с 2) Очевидно, что 3) Для каждого «подозреваемого» 4) Для так что 5) Таким образом, верный ответ (минимальное значение Еще пример задания: Запись числа 3010 в системе счисления с основанием N оканчивается на 0 и содержит 4 цифры. Чему равно основание этой системы счисления N? Решение (1 способ, подбор): 1) запись числа 30 в системе с основанием N длиннее, чем в десятичной (4 цифры против двух), поэтому основание N меньше 10 2) это дает шанс решить задачу методом подбора, переводя в разные системы, начиная с N = 2 до N = 9 3) переводим: 30 = 111102 = 10103 = … 4) дальше можно не переводить, поскольку запись 10103 удовлетворяет условию: заканчивается на 0 и содержит 4 цифры 5) можно проверить, что при N ≥ 4 запись числа 30 содержит меньше 4 цифр, то есть не удовлетворяет условию 6) Ответ: 3. Решение (2 способ, неравенства): 1) запись числа 30 в системе с основанием N содержит ровно 4 цифры тогда и только тогда, когда старший разряд – третий, то есть 2) первая часть двойного неравенства 3) вторая часть неравенства 4) объединяя результаты пп. 2 и 3 получаем, что N = 3 5) заметим, что условие «оканчивается на 0» – лишнее, ответ однозначно определяется по количеству цифр 6) Ответ: 3. Задачи для тренировки [1]: 1) Укажите через запятую в порядке возрастания все основания систем счисления, в которых запись числа 22 оканчивается на 4. 2) В системе счисления с некоторым основанием число 12 записывается в виде 110. Укажите это основание. 3) Укажите через запятую в порядке возрастания все основания систем счисления, в которых запись числа 39 оканчивается на 3. 4) Укажите через запятую в порядке возрастания все основания систем счисления, в которых запись числа 29 оканчивается на 5. 5) В системе счисления с некоторым основанием десятичное число 129 записывается как 1004. Укажите это основание. 6) Укажите через запятую в порядке возрастания все основания систем счисления, в которых запись числа 40 оканчивается на 4. 7) В системе счисления с некоторым основанием число десятичное 25 записывается как 100. Найдите это основание. 8) Укажите через запятую в порядке возрастания все основания систем счисления, в которых запись числа 27 оканчивается на 3. 9) Укажите через запятую в порядке возрастания все десятичные числа, не превосходящие 26, запись которых в троичной системе счисления оканчивается на 22? 10) Укажите через запятую в порядке возрастания все десятичные числа, не превосходящие 30, запись которых в четверичной системе счисления оканчивается на 31? 11) Укажите через запятую в порядке возрастания все десятичные натуральные числа, не превосходящие 17, запись которых в троичной системе счисления оканчивается на две одинаковые цифры? 12) Укажите, сколько всего раз встречается цифра 3 в записи чисел 19, 20, 21, …, 33 в системе счисления с основанием 6. 13) Укажите, сколько всего раз встречается цифра 1 в записи чисел 12, 13, 14, …, 31 в системе счисления с основанием 5. 14) Укажите через запятую в порядке возрастания все основания систем счисления, в которых запись числа 23 оканчивается на 1. 15) Укажите через запятую в порядке возрастания все основания систем счисления, в которых запись числа 63 оканчивается на 23. 16) Десятичное число, переведенное в восьмеричную и в девятеричную систему, в обоих случаях заканчивается на цифру 0. Какое минимальное натуральное число удовлетворяет этому условию? 17) В системе счисления с некоторым основанием десятичное число 49 записывается в виде 100. Укажите это основание. 18) Укажите наименьшее основание системы счисления, в которой запись числа 70 трехзначна. 19) Укажите наименьшее основание системы счисления, в которой запись числа 50 двузначна. 20) Сколько значащих цифр в записи десятичного числа 357 в системе счисления с основанием 7? 21) Укажите через запятую в порядке возрастания все десятичные числа, не превосходящие 25, запись которых в системе счисления с основанием 6 начинается на 4? 22) Укажите через запятую в порядке возрастания все десятичные числа, не превосходящие 20, запись которых в системе счисления с основанием 3 начинается на 2? 23) Какое десятичное число при записи в системе счисления с основанием 5 представляется как 12345? 24) Укажите через запятую в порядке возрастания все десятичные числа, не превосходящие 25, запись которых в двоичной системе счисления оканчивается на 101? 25) Укажите через запятую в порядке возрастания все основания систем счисления, в которых запись числа 30 оканчивается на 8. 26) Укажите через запятую в порядке возрастания все основания систем счисления, в которых запись числа 31 оканчивается на 4. 27) В системе счисления с некоторым основанием десятичное число 83 записывается в виде 123. Укажите это основание. 28) В системе счисления с некоторым основанием десятичное число 144 записывается в виде 264. Укажите это основание. 29) Укажите через запятую в порядке возрастания все основания систем счисления, в которых запись числа 32 оканчивается на 4. 30) Укажите через запятую в порядке возрастания все десятичные числа, не превосходящие 27, запись которых в двоичной системе счисления оканчивается на 110? 31) Укажите через запятую в порядке возрастания все десятичные числа, не превосходящие 25, запись которых в троичной системе счисления оканчивается на 21? 32) Укажите через запятую в порядке возрастания все десятичные числа, не превосходящие 45, запись которых в двоичной системе счисления оканчивается на 1010? 33) Десятичное число кратно 16. Какое минимальное количество нулей будет в конце этого числа после перевода его в двоичную систему счисления? 34) В системе счисления с некоторым основанием десятичное число 18 записывается в виде 30. Укажите это основание. 35) Укажите, сколько всего раз встречается цифра 3 в записи чисел 13, 14, 15, …, 23 в системе счисления с основанием 4. 36) Укажите, сколько всего раз встречается цифра 2 в записи чисел 13, 14, 15, …, 23 в системе счисления с основанием 3. 37) В саду 100 фруктовых деревьев – 14 яблонь и 42 груши. Найдите основание системы счисления, в которой указаны эти числа. 38) Найдите основание системы счисления, в которой выполнено сложение: 144 + 24 = 201. 39) Найдите основание системы счисления, в которой выполнено умножение: 3·213 = 1043. 40) Укажите через запятую в порядке возрастания все десятичные числа, не превосходящие 20, запись которых в системе счисления с основанием 5 оканчивается на 3? 41) Укажите через запятую в порядке возрастания все десятичные числа, не превосходящие 100, запись которых в системе счисления с основанием 5 оканчивается на 11? 42) Укажите через запятую в порядке возрастания все основания систем счисления, в которых запись числа 75 оканчивается на 13. 43) Укажите через запятую в порядке возрастания все основания систем счисления, в которых запись числа 84 оканчивается на 14. 44) Укажите через запятую в порядке возрастания все основания систем счисления, в которых запись числа 61 оканчивается на 15. 45) Найдите десятичное число x, такое что 20 < x < 30, запись которого в системе счисления с основанием 3 заканчивается на 11. 46) Запись числа 658 в некоторой системе счисления выглядит так: 311q. Найдите основание системы счисления q. 47) Запись числа 30 в некоторой системе счисления выглядит так: 110q. Найдите основание системы счисления q. 48) Запись числа 2B16 в некоторой системе счисления выглядит так: 111q. Найдите основание системы счисления q. 49) Запись числа 23 в некоторой системе счисления выглядит так: 212q. Найдите основание системы счисления q. 50) Запись числа 2105 в некоторой системе счисления выглядит так: 313q. Найдите основание системы счисления q. 51) Укажите наименьшее основание системы счисления, в которой запись числа 50 трехзначна. 52) Укажите через запятую в порядке возрастания все основания систем счисления, в которых запись числа 348 оканчивается на 20. 53) Запись числа 344 в некоторой системе счисления выглядит так: 1A8q. Найдите основание системы счисления q. 54) К записи натурального числа в восьмеричной системе счисления справа приписали два нуля. Во сколько раз увеличилось число? Ответ запишите в десятичной системе счисления. 55) Запись числа 281 в системе счисления с основанием N содержит 3 цифры и оканчивается на 1. Чему равно максимально возможное основание системы счисления? 56) Запись числа 381 в системе счисления с основанием N содержит 3 цифры и оканчивается на 3. Чему равно максимально возможное основание системы счисления? 57) Запись числа 338 в системе счисления с основанием N содержит 3 цифры и оканчивается на 2. Чему равно максимально возможное основание системы счисления? 58) Запись числа 256 в системе счисления с основанием N содержит 3 цифры и оканчивается на 4. Чему равно минимально возможное основание системы счисления? 59) Запись числа 325 в системе счисления с основанием N содержит 3 цифры и оканчивается на 1. Чему равно минимально возможное основание системы счисления? 60) Запись числа 180 в системе счисления с основанием N содержит 3 цифры и оканчивается на 0. Перечислите в порядке возрастания все возможные основания системы счисления. 61) Запись числа 280 в системе счисления с основанием N содержит 3 цифры и оканчивается на 0. Перечислите в порядке возрастания все возможные основания системы счисления. 62) Запись натурального числа в системах счисления с основанием 4 и 6 заканчивается на 0. Найдите минимальное натуральное число, удовлетворяющее этим условиям. 63) Десятичное число 71 в некоторой системе счисления записывается как «78». Определите основание системы счисления. 64) Десятичное число 70 в некоторой системе счисления записывается как «64». Определите основание системы счисления. 65) Десятичное число 57 в некоторой системе счисления записывается как «212». Определите основание системы счисления. 66) Десятичное число 109 в некоторой системе счисления записывается как «214». Определите основание системы счисления. 67) Решите уравнение 68) Решите уравнение 69) Решите уравнение 70) Решите уравнение
[1] Источники заданий: 1. Демонстрационные варианты ЕГЭ 2004-2013 гг. 2. Тренировочные работы МИОО. 3. Гусева И.Ю. ЕГЭ. Информатика: раздаточный материал тренировочных тестов. — СПб: Тригон, 2009. 4. Самылкина Н.Н., Островская Е.М. Информатика: тренировочные задания. – М.: Эксмо, 2009. 5. Якушкин П.А., Лещинер В.Р., Кириенко Д.П. ЕГЭ 2010. Информатика. Типовые тестовые задания. — М: Экзамен, 2010. 6. Крылов С.С., Лещинер В.Р., Якушкин П.А. ЕГЭ-2010. Информатика. Универсальные материалы для подготовки учащихся / под ред. В.Р. Лещинера / ФИПИ. — М.: Интеллект-центр, 2010. 7. Якушкин П.А., Ушаков Д.М. Самое полное издание типовых вариантов реальных заданий ЕГЭ 2010. Информатика. — М.: Астрель, 2009. 8. М.Э. Абрамян, С.С. Михалкович, Я.М. Русанова, М.И. Чердынцева. Информатика. ЕГЭ шаг за шагом. – М.: НИИ школьных технологий, 2010. 9. Чуркина Т.Е. ЕГЭ 2011. Информатика. Тематические тренировочные задания. — М.: Эксмо, 2010. 10. Информатика и ИКТ: ЕГЭ-2012. – СПб.: Просвещение, 2012. Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.08 сек.) |