|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Цитокинез растительной и животной клеткиТема: Жизненный цикл клетки. Деление клетки. · Клеточный цикл · Цитокинез растительной и животной клетки · Фазы митоза. Биологическое значение митоза · Фазы мейоза. Клеточный цикл Клеточный цикл представляет собой совокупность процессов, происходящих в клетке при подготовке ее к делению и во время собственно деления, в результате чего митеринская клетка делится на две дочерние. В цикле выделяют две фазы: автосинтетическую, или интерфазу (подготовка клетки к делению), включающую пресинтетический (G,, от англ. gap — промежуток), синтетический (S) и постсинтетический (G2) периоды, и деление клетки — митоз. Хайфлик высказал точку зрения, согласно которой клетки от начала своего возникновения после первого деления могут проходить несколько десятков клеточных циклов. После этого они погибают. Полагали, что утрата клетками способности вступать в новые циклы и делиться — одна из причин старения организма.
Интерфаза — последовательность событий, подготавливающих митоз. Весьма важным в интерфазе является матричный синтез ДНК и удвоение хромосом — S-фаза. Промежуток между делением и наступлением S-фазы называется фазой G1 (постмитотическая, или пресинтетическая, фаза), а между S-фазой и митозом — фазой G2 (постсинтетическая, или премитотическая, фаза). В течение фазы G1 клетка диплоидна, в течение фазы S плоидность возрастает до четырех, в фазе G2 клетка тетраплоидна. В интерфазе скорость биосинтетических процессов возрастает в направлении Gt -> S -> G2. В это время удваивается масса клетки и всех ее компонентов, а также происходит удвоение центриолей. В течение пресинтетической фазы G1 в клетке уже усилены биосинтетические процессы и происходит подготовка к удвоению ДНК. При этом развиваются преимущественно те органеллы, которые необходимы для синтеза ферментов, обеспечивающих, всвою очередь, предстоящее удвоение ДНК (прежде всего, это рибосомы). На материнской центриоли клеточного центра увеличивается количество сателлитов. Фаза G1 длится от нескольких часов до суток и более. Общая сущность S-фазы уже раскрыта в предыдущем абзаце. Самоудвоение (репликация) хромосом весьма сложно и протекает постепенно. Суть удвоения состоит в том, что на цепочке ДНК синтезируется точно такая же параллельная цепочка. Репликация (от лат. replicatio — повторение) — это процесс передачи генетической информации, хранящейся в родительской ДНК, путем точного её воспроизведения в дочерней клетке. При этом каждая родительская цепь ДНК является матрицей для синтеза дочерней (матричный синтез ДНК). Хромосома имеет структуру, обеспечивающую этот процесс. На хромосоме находится небольшая область, которая не участвует в матричном синтезе — центромера (или центромер). Она подразделяет хромосому на два плеча. На концах хромосомы находятся тоже области, не участвующие в синтезе — теломеры. В S-периоде наиболее интенсивно синтезируется РНК и белки, связанные с ДНК, и удваиваются центриоли. В цитоплазме в течение S-фазы удваиваются не только цепи ДНК, но и каждая из центриолей клеточного центра. Материнская центриоль строит свою новую дочернюю. На мембранах ЭПС одновременно синтезируются белки (в том числе гистоны), необходимые для включения в состав новой хроматиды. В течение премитотической фазы G2 совершаются синтезы, необходимые для обеспечения непосредственно процесса деления. В этом периоде усиливается формирование лизосом, делятся митохондрии и синтезируются новые белки, абсолютно необходимые для осуществления митоза. К концу интерфазы хроматин конденсирован, ядрышко хорошо видно, ядерная оболочка не нарушена, органеллы не изменены. Фаза G2 продолжается до 6 часов. На протяжении каждой из названных фаз имеются так называемые критические точки (регуляторные точки). Фазы митоза Когда подготовка к делению заканчивается, начинается непосредственно митоз (от греч. mitos — нить). В нем различают четыре основные фазы: профазу, метафазу, анафазу и телофазу. Иногда выделяют шесть фаз: профазу, прометафазу, метафазу, анафазу, телофазу и цитокинез В течение профазы основные события происходят в ядре. На участках эухроматина прекращается транскрипция. Они покрываются белками и по плотности становятся не отличимыми от гетерохроматина. Даже при разрешении светового микроскопа в ядре становятся видимыми многочисленные плотные базофильные скопления. Затем начинается спирализация хромосом. Вследствие этого они становятся индивидуально различимыми. Спирализация, естественно, захватывает и области ядрышковых организаторов, так что ядрышко в результате распадается. Итак, к началу профазы хроматин конденсируется, в результате чего в ядре образуется плотный клубок. Центриоли попарно расходятся к противоположным концам клетки, которые теперь называют полюсами. Одновременно на сателлитах центриолей идет интенсивная сборка микротрубочек. События метафазы начинаются в цитоплазме. Лизосомы растворяют ядерную оболочку, так что спирализованные хромосомы и клеточные центры оказываются в общем компартменте.
Этому предшествует фосфорилирование белков ядерной пластинки (ламины), происходящее еще в профазе, что приводит к распаду пластинки, а затем и самой нуклеолеммы. Фрагменты распавшейся ядерной оболочки формируют мелкие мембранные пузырьки, цитоплазма клетки смешивается с кариоплазмой. Комплекс Гольджи и ЭПС распадаются на мелкие фрагменты в виде пузырьков. На каждой центромере выявляется скопление специальных белков — кинетохор (от греч. kineo — подвижный и choreo — иду вперед). Эти белки существуют и у хромосом неделящихся клеток, но в этих условиях они выявляются лишь с помощью специального мечения особыми антителами к ним. Сборка микротрубочек на материнских центриолях продолжается, так что в результате возникает биполярное митотическое веретено, состоящее из этих микротрубочек и ассоциированных с ними белков. В ходе собственно метафазы хромосомы перемещаются и располагаются в одной плоскости перпендикулярно к оси между полюсами. Образуется фигура, называемая материнской звездой. При этом все хромосомы располагаются так, что их центромеры находятся в экваториальной плоскости, пересекающей продольную ось веретена под прямым углом (метафазная пластинка), причем каждый кинетохор одной d-хромосомы обращен к одному из полюсов клетки. В результате упорядочения положения хромосом система микротрубочек тоже упорядочивается. Они теперь образуют веретено деления (митотическое веретено). Хроматиды прочно присоединяются к веретену благодаря взаимодействию кинетохорных трубочек с перицентриолярным веществ. В начале анафазы происходит быстрая репликация ДНК в области центромеры, что и служит сигналом к началу анафазы. Анафаза начинается внезапно с резкого разделения общей центромеры d-хромосомы, в результате чего сестринские хроматиды становятся самостоятельными s-хромосомами. Микротрубочки начинают укорачиваться: у кинетохоров происходит их разборка. В результате этого хроматиды подтягиваются к центриолям. В это время s-хромосомы начинают передвигаться и с одинаковой скоростью (около 1 мкм в минуту) направляются к полюсам клетки. Сами центриоли удаляются друг от друга в сторону полюсов клетки. Образуется две дочерних звезды. На хромосомы воздействуют две силы: тянущие, возникающие вследствие деполимеризации хромосомных трубочек около полюсов веретена, и расталкивающие — в связи с полимеризацией тубулина на концах непрерывных микротрубочек вблизи экватора. При этом по мере расхождения хромосом веретено удлиняется, а степень перекрывания друг друга непрерывных трубочек уменьшается. Возможно, источником сил, раздвигающих полюсы, является динеин, в то время как движение хромосом к полюсам обусловлено микротрубочками. В конце анафазы плазматическая мембрана как бы инвагинируется перпендикулярно к продольной оси митотического веретена, образуя борозду. В этой области под плазмалеммой появляется сократимое кольцо, состоящее из актин- и миозинсодержащих нитей, которое распадается после разделения клетки. Телофаза завершает деление. Под плазмалеммой кольцом по проекции бывшей материнской звезды активируются элементы цитоскелета — актиновые микрофиламенты. Рядом с ними полимеризуется миозин. Актино-миозиновое кольцо сжимается, и возникает перетяжка плазмалеммы. В телофазе разделившиеся группы хромосом подходят к полюсам, теряют хромосомные микротрубочки, разрыхляются, деконденсируются, переходя в хроматин, и начинают транскрибировать РНК. Примерно в середине телофазы начинается образование нитчатой, а затем гранулярной частей нуклеонемы. К концу телофазы (после восстановления ядерной оболочки!) ядрышко полностью сформировано. Из мембранных ядерная оболочка образуется из мембранных фрагментов вначале в виде небольших шапочек, расположенных на поверхности формирующихся глыбок хроматина. Фрагменты оболочки растут, сливаются между собой, окружая все ядро к концу телофазы. При этом восстанавливаются ядерные поры и поровые комплексы, дефосфорилируются белки ядерной пластинки, что приводит к ее восстановлению. Биологическое значение митоза: · Генетическая стабильность · Обеспечивает процессы роста и бесполого размножения Цитокинез растительной и животной клетки В телофазе перед цитокинезом увеличивается биосинтез мембран, которые необходимы для того, чтобы покрыть обе дочерние клетки. Вновь синтезированные мембраны до момента разделения клетки образуют на ее поверхности пузырьки, которые затем встраиваются в плазмалеммы дочерних клеток. Перетяжка становится все более глубокой, и в результате в конце концов одна клетка разделяется на две (цитокинез). Обе дочерние клетки диплоидны. Однако не всегда деление ядра сопровождается разделением клетки. Поэтому помимо телофазы (при полном делении клетки) и выделяют цитокинез. После митоза в течение нескольких часов дочерние клетки связаны между собой небольшим остаточным тельцем, образованным непрерывными микротрубочками и электроноплотным материалом матрикса. Остаточное тельце покрыто плазмалеммой. Есть все основания считать, что сила, необходимая для разделения клеток, возникает в результате взаимного скольжения актиновых и миозиновых филаментов. Фазы мейоза У организмов, размножающихся половым путем, имеется две категории клеток: диплоидные и гаплоидные. К первым относятся соматические и предшественницы половых клеток, ко вторым — зрелые половые (гаметы). Уменьшение количества хромосом в два раза достигается благодаря мейозу. Он включает в себя два последовательных деления. После слияния гамет возникает новый одноклеточный диплоидный организм (зигота), который несет не просто сумму признаков своих родителей, а является индивидуумом с присущими только ему свойствами. При дальнейшем митотическом делении зиготы образуются диплоидные же клетки, содержащие по два экземпляра каждой хромосомы, которые называются гомологичными. Гомологичные хромосомы, имеющие одинаковую длину и одинаковое расположение центромер, содержат одинаковое количество генов, а эти гены имеют одну и ту же линейную последовательность. Каждая из пары гомологичных хромосом диплоидного организма происходит либо из ядра спермия, либо из ядра яйцеклетки. При образовании гамет в зрелом организме в результате мейоза в каждую дочернюю клетку от всех пар гомологичных хромосом попадает лишь по одной из них. Это становится возможным потому, что при мейозе происходит лишь одна репликация ДНК, за которой следуют два последовательных деления ядер (мейоз I и II) без повторного синтеза ДНК. В результате из одной диплоидной образуются четыре гаплоидные клетки. Напомним, что перед началом мейоза в интерфазе клетка прошла обычные фазы Gx, S и G2, так что стала тетраплоидной. Иначе говоря, произошла репликация ДНК и бел-ков-гистонов хромосом, а сестринские хроматиды при этом остались связанными своими центромерами, так что в ядре имеется по четыре набора каждой хромосомы. Увеличена масса клетки и ее органелл. Каждое из двух делений мейоза (деления I и II) имеет свои отличительные черты.
Особенность деления I состоит в необычном и сложном прохождении профазы (профаза I). Она подразделяется на несколько стадий: пролептонему, леп-тонему, зигонему, пахинему, диплонему и диакинез. Во время пролептонемы (от греч. pro — период, leptos — тонкий, пета — нить) происходит значительная, но не полная спирализация хромосом. Ядерная оболочка сохраняется, ядрышко не распадается. Поэтому во время профазы мейоза возможны синтезы некоторых РНК и белков. За счет этих синтезов в половых клетках (особенно в женской) создаются запасы веществ, которые будут необходимы для оплодотворения и ранних стадий развития зародыша. Во время лептонемы хромосомы еще больше спирализуются, и в ядре становятся видными тонкие нитевидные d-хромосомы (их 46, т. е. два набора). Подчеркнем, что каждая гомологичная хромосома уже реплицировна и состоит из двух сестринских хроматид. Каждая хромосома представляет собой тонкую фибриллу, состоящую из осевой белковой нити, к которой прикрепляется хроматин сестринских хроматид (петли ДНК). Хромосомы с помощью белковых скоплений — прикрепительных дисков — закреплены обоими своими концами на внутренней мембране ядерной оболочки (ядерная оболочка сохраняется, ядрышко хорошо видно). Во время зигонемы (от греч. zygon — парный) гомологичные диплоидные хромосомы выстраиваются рядом, обвивают друг друга, укорачиваются и сцепляются между собой (конъюгация). Образуются так называемые тетраплоидные биваленты (от лат. Ы — двойной, valens — сильный). Напомним, что каждая диплоидная хромосома из одного бивалента происходит либо от отца, либо от матери. Половые хромосомы располагаются около внутренней ядерной мембраны. Область, занятая ими, называется половым пузырьком. В зигонеме гомологичные d-хромосомы выстраиваются рядом, сближаются, между ними образуются специализированные синаптонемальные комплексы (от греч. synapsis — связь, соединение), которые представляют собой белковые структуры. При небольшом электронно-микроскопическом увеличении синаптонемальный комплекс выглядит в виде двух электронно-плотных полос, разделенных светлой полосой. При большом увеличении в комплексе видны две параллельные боковые белковые нити длиной 120—150 нм и толщиной 10 нм каждая, соединенные тонкими поперечными полосами размерами около 7 нм, по обе стороны от них лежат d-хромосомы. Их ДНК формирует множество петель. В центре комплекса проходит осевой элемент толщиной 20—40 нм. Синаптонемальный комплекс удачно сравнивают с веревочной лестницей, стороны которой образованы гомологичными хромосомами. Именно в результате этого гомологичные хромосомы сцепляются между собой и образуют биваленты, 46 d-хромосом образуют 23 бивалента. Каждый бивалент состоит из двух d-хромосом, т. е. из четырех хроматид. К концу зиготены каждая пара гомологичных хромосом связана между собой с помощью синаптонемальных комплексов. Лишь половые хромосомы X и Y конъюгируют неполностью, т. к. они неполностью гомологичны. Пахинема (от греч. pahys — толстый) продолжается не менее, чем несколько суток. Процессы развертываются постепенно. Хромосомы несколько укорачиваются и утолщаются. Между хроматидами материнского и отцовского происхождения в нескольких местах возникают соединения — хиазмы (от греч. chiasma — перекрест), или рекомбинантные узелки. Они представляют собой белковые комплексы размерами около 90 нм. В области каждой хиазмы происходит обмен соответствующих участков гомологичных хромосом — от отцовской к материнской и наоборот. Этот процесс называют кроссинговером (от англ. crossing-over — перекрест). Таким образом, кроссинговер обеспечивает многочисленные генетические рекомбинации. В каждом биваленте человека в профазе I кроссинговер происходит в среднем в двух-трех участках. Количество рекомбинантных узелков равно количеству перекрестков. По окончании кроссинговера хроматиды разъединяются, но остаются связанными в области хиазм. Наступает стадия диплонемы. В диплонеме (от греч. diploos — двойной) синаптонемальные комплексы распадаются, конъюгировавшие хромосомы раздвигаются, и гомологичные хромосомы каждого бивалента отодвигаются друг от друга, но связь между ними сохраняется в зонах хиазм. Между диплонемой и диакинезом нет четкой морфологической границы, равно как и разграничений во времени. В диакинезе продолжается конденсация хромосом, они отделяются от нуклеолеммы, но гомологичные d-хромосомы продолжают еще оставаться связанными между собой хиазмами, а сестринские хроматиды каждой d-хромосомы — центромерами. Благодаря наличию нескольких хиазм биваленты образуют петли. В это время разрушаются ядерная оболочка и ядрышки. Реплицированные центриоли направляются к полюсам, образуется веретено деления. Вследствие сильно затянутой диплонемы профаза мейоза очень длительна. При развитии спермиев она может длиться несколько суток, а при развитии яйцеклеток — в течение многих лет. Половые клетки в профазе мейоза называются гаметоцитами первого порядка (первичными га-метоцитами, гаметоцитами I). Метафаза I напоминает аналогичную стадию митоза. Хромосомы устанавливаются в экваториальной плоскости, образуя метафазную пластинку. В анафазе I хиазмы распадаются, гомологичные хромосомы отделяются друг от друга и расходятся к полюсам. Центромеры этих хромосом не реплицируются- сестринские хромосомы не расходятся В телофазе I формируется ядерная оболочка и ядрышко, образуется и углубляется борозда деления, происходит карикенез. Интерфаза II очень короткая. ДНК не реплицируется. Профаза II не длительная, и коньюгация хромосом при этом не наступает. В метафазе II 23 хромосомы выстраиваются в области экватора. В анафазе II ДНК в области центромеры реплицируется, хромосомы расходятся к полюсам клетки. В телофазе II образуются две дочерние клетки. Итак, в результате двух последовательных делений мейоза образуются 4 клетки, каждая из которых несет гаплоидный набор хромосом. Как известно, клетки не возникают сами по себе, а образуются только при делении других. После деления во вновь образованной клетке не всегда сразу существуют все системы, обеспечивающие ее специфическую функцию. Должно пройти некоторое время, чтобы сформировались все органеллы и были бы синтезированы все необходимые ферменты. Этот отрезок времени называется созреванием. Созревание клетки осуществляется на основе уже сложившейся ее полной детерминации. Большинство клеток, однако, погибает тогда, когда проявляются особые естественные генетические механизмы. Генетически запрограммированную клеточную гибель называют апоптозом. Механизм возникновения апоптоза весьма сложен. Каждая клетка несет в хромосомах гены, которые могут запускать синтез ферментов, стимулирующих ее к делению. Есть также гены, которые обеспечивают синтез ферментов, препятствующих делению. Пока клетка функционирует, эти синтезы уравновешены. Для поддержания жизненного равновесия клетка должна также получать сигналы от других клеток, нередко другого вида. Обычно в качестве сигнальных выступают специфические молекулы олигопептидов. Поскольку они поддерживают жизнь клеток, их назвали цитокинами. В жизненном цикле многих видов клеток наступает момент, когда функциональные их возможности исчерпываются. У таких клеток нарушается чувствительность к цитокинам и изменяется соотношение активности генов, обеспечивающих внутреннее равновесие. Гены, обеспечивающие размножение клетки, блокируются. Напротив, гены, обеспечивающие синтез литических ферментов, стимулируются. Последние поступают в ядро и лизируют хроматин. Хромосомы распадаются, синтезы в клетке прекращаются. Внешние проявления такой гибели клеток разнообразны и известны давно. Их называли пикнозом (сморщивание ядра), хроматолизисом (снижение окрашиваемости ядра), кариорексисом (распад ядра на части). Лишь недавно было показано, что это лишь частные проявления апоптоза. Вслед за гибелью ядра разрушается и цитоплазма. Остатки фагоцитируются макрофагами. Материал погибших клеток перерабатывается макрофагами и может выводиться ими на поверхность. В таком случае этот материал может опять использоваться другими клетками. Вокруг клеток, подвергшихся апоптозу, воспалительный процесс не возникает, и жизнедеятельность ткани, часть которой составляли погибшие клетки, продолжается без нарушений. Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.019 сек.) |