АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Определение вероятности попадания по шкале рассеивания

Читайте также:
  1. T.5 Определение нормальной скорости распространения пламени и термодинамических параметров
  2. T.5. Определение нормальной скорости распространения пламени и термодинамических параметров.
  3. V.2 Определение величин удельных ЭДС.
  4. VII. Определение установившихся скоростей поезда рассчитанной массы на прямом горизонтальном участке пути при работе электровоза на ходовых позициях.
  5. Анализ кредитоспособности заемщиков-юридических лиц, определение класса кредитоспособности.
  6. Вероятности переходов
  7. Вероятность попадания и ее зависимость от различных причин
  8. Вопрос 21. Определение потребности в рабочих на нормируемых работах
  9. Вопрос 37. Миссия организации: определение, значение, роль.
  10. Вопрос 40. Цели организации: определение, значение, роль
  11. Вопрос 4: Определение объёма перевозок и грузооборота.
  12. Выбор материала зубчатой передачи и определение допускаемых напряжений

Также существует способ определения вероятности попадания по шкале рассеивания, который используется в случаях, когда цель или часть ее выходит за пределы рассеивания. Рассмотрим этот способ на конкретном примере (на рис. 8).

2z

 

2y

 

Рис. 8 Определение вероятности попадания в одиночную цель

Используя рис. 8, можно подсчитать вероятность попадания в эту цель с помощью шкалы рассеивания.

Сначала определяется вероятность попадания в бесконечно длинную полосу , высота которой равна высоте цели. Далее определяется вероятность попадания в бесконечно длинную полосу 2z, ширина которой равна ширине цели. После определяется вероятность попадания в прямоугольник, образуемый пересечением полос и 2z. Как видно на рис. 8 в этот прямоугольник попадут только те пули, которые одновременно войдут в полосы и 2z, поэтому вероятность попадания в прямоугольник равна произведению вероятностей попадания в полосы и 2z. И последним этапом вычисляется вероятность попадания в цель, которую необходимо было определить. Для этого допускаем, что рассеивание пуль в пределах прямоугольника происходит равномерно, тогда вероятность попадания в цель будет меньше вероятности попадания в прямоугольник во столько раз, во сколько раз площадь цели меньше площади прямоугольника. Такое отношение площади цели к площади описанного вокруг цели прямоугольника называется коэффициент фигурности цели.

Определяя вероятность попадания по шкале рассеивания, допускаются некоторые неточности, считая, что рассеивание в пределах каждой полосы, равной одному срединному отклонению, равномерно.

Для более точных расчетов применяется более совершенный способ определение вероятности попадания — по таблице значений вероятностей. Рассмотрим этот способ.


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 |


При использовании материала, поставите ссылку на Студалл.Орг (0.005 сек.)