АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Колебания и волны

Читайте также:
  1. Акустические колебания
  2. Акустические колебания, их классификация, характеристики, вредное влияние на организм человека, нормирование.
  3. В схеме, состоящей из конденсатора и катушки, происходят свободные электромагнитные колебания. Энергия конденсатора в произвольный момент времени t определяется выражением
  4. Воздействие негативных факторов на человека и их нормирование (вибрации и акустические колебания)
  5. Возникновение ударной волны
  6. Волны де Бройля
  7. Волны де Бройля
  8. ВОЛНЫ ДЕ БРОЙЛЯ
  9. Волны международной миграции рабочей силы и их основные особенности
  10. Волны политической модернизации
  11. Вопрос 12 Механические колебания
  12. Вопрос 12 Механические колебания (вибрация)

Литература

1. Ремизов А.Н. «Медицинская и биологическая физика»,М.2001 г.

2. Блохина М.Е., Эссаулова И.А. и др. «Руководство к лабораторным работам по медицинской и биологической физике»

3. Кумыков. В.К., Захохов Г.М. «Физические методы в функциональной диагностике» Нальчик, КБГУ,2006

4. Кумыков. В.К., Абазова З.Х «Физические методы в медицинских технологиях» Нальчик, КБГУ, 2004

 

 

Лекция №1

Колебания и волны

  1. Гармонический осциллятор. Колебательные системы в биологии и медицине.
  2. Механические волны, их уравнение. Вектор Умова. Ультразвук, его применение в медицине.
  3. Эффект Доплера, его медицинские приложения

 

1. Колебания гармонического осциллятора являются очень важным примером периодического движения. К числу классических систем, аналогичных гармоническому осциллятору, относятся любые системы, которые, будучи слегка выведены из положения равновесия, совершают устойчивые колебания. К ним относятся:

  1. Математический маятник в пределах малых углов отклонения.
  2. Масса на пружине в пределах малых амплитуд колебаний
  3. Колебательный контур, состоящий из конденсатора и катушки

Частота колебаний осциллятора не зависит от амплитуды.

 

Математический маятник состоит из материальной (∙) массой m, расположенной на нижнем конце невесомого стержня длиной L, свободно вращающегося вокруг оси, проходящей через верхний конец.

Выведем уравнение колебаний маятника. Проще всего записать уравнение F=ma, однако поучительнее будет решить поставленную задачу через закон сохранения энергии. Отклонение маятника определяется углом , который стержень образует с вертикалью.

(1)

Потенциальная энергия маятника

U()=Mgh (2)

(3)

Кинетическая энергия маятника равна

(4)

Полная энергия маятника равна

(5)

Принимая во внимание, что (6)

(7)

Решая это уравнение относительно находим

(8)

При . Тогда из (7) получим с учетом того, что :

, (9)

Тогда (8) перепишется в виде:

(10)

Или (11)

Этот вид удобен для интегрирования. Если начальные условия таковы, что при , то

(12)

(13)

Так как , то (13) запишется

(14)

Или (15)

Где - круговая частота

-фаза

Период колебаний математического маятника

пружинного

колебательного контура

 


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.005 сек.)