АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Лекция 13. Мощность цепи, имеющей только активные сопротивления, называется активной мощностью Р

Читайте также:
  1. Естествознание как отрасль научного познания. Классификация наук. (плюс то, что у вас в лекциях)
  2. И сразу наконец лекция здесь начинается
  3. Латинская Америка. Лекция от 12.10.
  4. Лекция 02.10.2013. Основные технические документы, предъявляемые на государственные и контрольные испытания
  5. Лекция 08.10.2013. Технические условия (ТУ).
  6. ЛЕКЦИЯ 1
  7. Лекция 1
  8. Лекция 1
  9. Лекция 1
  10. ЛЕКЦИЯ 1
  11. Лекция 1 1 страница
  12. Лекция 1 10 страница

Мощность цепи, имеющей только активные сопротивления, называется активной мощностью Р. Ее вычисляют, как обычно, по одной из следующих формул:

Активная мощность характеризует безвозвратный (необратимый) расход энергии тока.

В цепях переменного тока имеется гораздо больше причин, вызывающих безвозвратные потери энергии, нежели в цепях постоянного тока. Эти причины следующие:

1. Нагрев провода током. Для постоянного тока нагрев является почти единственным видом потерь энергии. А для переменного тока, одинакового по значению с постоянным током, потери энергии на нагрев провода больше вследствие возрастания сопротивления провода за счет поверхностного эффекта. Чем выше частота тока, тем больше сказывается поверхностный эффект и тем больше потери на нагрев провода.

2. Потери на создание вихревых токов, иначе называемых токами Фуко. Эти токи индуктируются во всех металлических телах, находящихся в магнитном поле, образованном переменным током. От действия вихревых токов металлические тела нагреваются. Особенно значительные потери на вихревые токи могут наблюдаться в стальных сердечниках. Потери энергии на создание вихревых токов растут с повышением частоты.

3. Потери на магнитный гистерезис. Под влиянием переменного магнитного поля ферромагнитные сердечники перемагничиваются. При этом возникает взаимное трение частиц сердечника, в результате которого сердечник нагревается. С повышением частоты потери на магнитный гистерезис увеличиваются.

4. Потери в твердых или жидких диэлектриках. В таких диэлектриках переменное электрическое поле вызывает поляризацию молекул, т. е. на противоположных сторонах молекул возникают равные по значению, но разные по знаку заряды. Поляризованные молекулы под действием поля поворачиваются и при этом испытывают взаимное трение. За счет него диэлектрик нагревается. При повышении частоты его потери возрастают.

5. Потери на утечку в изоляции. Применяемые изоляционные вещества не являются идеальными диэлектриками и в них наблюдаются токи утечки. Иначе говоря, сопротивление изоляции хотя и очень велико, но не равно бесконечности. Этот вид потерь существует и на постоянном токе. При высоких напряжениях возможно даже стекание зарядов в воздух, окружающий провод.

6. Потери на излучение электромагнитных волн. Всякий провод с переменным током излучает электромагнитные волны, причем с возрастанием частоты энергия излучаемых волн резко увеличивается (пропорционально квадрату частоты). Электромагнитные волны безвозвратно уходят от провода, и поэтому расход энергии на излучение волн эквивалентен потерям в некотором активном сопротивлении. В антеннах радиопередатчиков этот вид потерь является полезным расходом энергии.

7. Потери на переход энергии в другие цепи. Вследствие явления электромагнитной индукции часть энергии переменного тока переходит из одной цепи в другую, расположенную рядом. В некоторых случаях, например, в трансформаторах, такой переход энергии полезен.

Активное сопротивление цепи переменного тока учитывает все перечисленные виды безвозвратных потерь энергии. Для последовательной цепи можно определить активное сопротивление как отношение активной мощности, т. е. мощности всех потерь к квадрату тока:

Таким образом, при данном токе активное сопротивление цепи тем больше, чем больше активная мощность, т. е. чем значительнее общие потери энергии.

Мощность в участке цепи с индуктивным сопротивлением называется реактивной мощностью Q. Она характеризует реактивную энергию, т. е. энергию, не расходующуюся безвозвратно, а лишь временно запасающуюся в магнитном поле. Для отличия от активной мощности реактивную мощность измеряют не ваттами, а вольт-амперами реактивными (вар или var). В связи с этим ее называли раньше безваттной.

Реактивная мощность определяется по одной из формул:

где UL — напряжение на участке с индуктивным сопротивлением xL; I — ток в этом участке.

Для последовательной цепи с активным и индуктивным сопротивлениями введено понятие полной мощности S. Она определяется произведением полного напряжения цепи U на ток I и выражается в вольт-амперах (В-А или VA)

Мощность в участке с активным сопротивлением подсчитывается по одной из приведенных выше формул или по формуле:

где φ — угол сдвига фаз между напряжением U и током I.

Множитель cosφ является коэффициентом мощности. Часто его называют «косинусом фи». Коэффициент мощности показывает, какую долю полной мощности составляет активная мощность:

Значение cosφ может изменяться от нуля до единицы в зависимости от соотношения между активным и реактивным сопротивлением. Если в цепи имеется только одно реактивное сопротивление, то φ = 90°, cosφ = 0, Р = 0 и мощность в цепи чисто реактивная. Если же имеется только активное сопротивление, то φ = 0, cosφ = 1 и Р = S, т. е. вся мощность в цепи чисто активная.

Чем меньше cosφ, тем меньшая доля полной мощности является активной мощностью и тем больше реактивная мощность. Но работа тока, т. е. переход его энергии в какой-либо другой вид энергии, характеризуется лишь активной мощностью. А реактивная мощность характеризует энергию, совершающую колебание между генератором и реактивным участком цепи.

Для электрической сети она является бесполезной и даже вредной. Следует отметить, что в радиотехнике реактивная мощность в ряде случаев является необходимой и полезной. Например, в колебательных контурах, которые широко применяются в радиотехнике и служат для получения электрических колебаний, мощность этих колебаний является почти чисто реактивной.
На векторной диаграмме показано, как при изменении cosφ изменяется ток приемника I при неизменной его мощности.

Векторная диаграмма токов приемника при неизменной мощности и различных коэффициентах мощности

Как видно, коэффициент мощности cosφ служит важным показателем степени использования полной мощности, развиваемой генератором переменной ЭДС. Надо обратить особое внимание на то, что при cosφ < 1 генератор должен создавать напряжение и ток, произведение которых больше активной мощности. Например, если в электрической сети активная мощность составляет 1000 кВт и cosφ = 0,8, то полная мощность будет равна:

Предположим, что в данном случае активная мощность получается при напряжении 100 кВ и токе 10 А. Однако генератор должен создавать напряжение 125 кВ, чтобы полная мощность была

Ясно, что применение генератора на более высокое напряжение невыгодно, а кроме того, при более высоком напряжении придется улучшить изоляцию проводов во избежание увеличения утечек или возникновения пробоя. Это приведет к удорожанию электрической сети.

Необходимость повышения напряжения генератора из-за наличия реактивной мощности характерна для последовательной цепи с активным и реактивным сопротивлением. Если же имеется параллельная цепь с активной и реактивной ветвями, то генератор должен создавать больший ток, чем нужно при одном активном сопротивлении. Иначе говоря, генератор нагружается дополнительным реактивным током.

Например, для рассмотренных выше значений Р = 1000 кВт, cosφ = 0,8 и S = 1250 кВА при параллельном соединении генератор должен при напряжении 100 кВ давать ток не 10 А, а 12,5 А. В этом случае не только генератор должен быть рассчитан на больший ток, но и провода электрической линии, по которой будет передан этот ток, придется взять большей толщины, что также увеличит стоимость линии. Если же в линии и у обмоток генератора будут провода, рассчитанные на ток 10 А, то ясно, что ток 12,5 А вызовет в этих проводах повышенный нагрев.

Таким образом, хотя дополнительный реактивный ток переносит от генератора в реактивные нагрузки и обратно реактивную энергию, все же он создает лишние потери энергии за счет активного сопротивления проводов.

КПД источника тока
 

 

Рассмотрим элементарную электрическую цепь, содержащую источник ЭДС с внутренним сопротивлением r, и внешним сопротивлением R (рис. 7.5). КПД всегда определяем как отношение полезной работы к затраченной:
  (7.8.1)  

Полезная работа – мощность, выделяемая на внешнем сопротивлении R в единицу времени. По закону Ома имеем: а тогда

.

Таким образом, имеем, что при но при этом ток в цепи мал и полезная мощность мала. Вот парадокс – мы всегда стремимся к повышенному КПД, а в данном случае нам это не приносит пользы.

Найдем условия, при которых полезная мощность будет максимальна. Для этого нужно, чтобы

.

  . (7.8.2)  

В выражении (7.8.2) , , следовательно, должно быть равно нулю выражение в квадратных скобках, т.е. r=R. При этом условии выделяемая мощность максимальна, а КПД равен 50%.

Вышесказанное утверждение хорошо иллюстрируется рисунком 7.7.

Как видно из рисунка максимальный КПД получается в данной цепи при уменьшении мощности.

Лекция 13


1 | 2 | 3 | 4 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.006 сек.)