АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Геометрическая интерпретация двойственных задач

Читайте также:
  1. I Психологические принципы, задачи и функции социальной работы
  2. I. ГИМНАСТИКА, ЕЕ ЗАДАЧИ И МЕТОДИЧЕСКИЕ ОСОБЕННОСТИ
  3. I. ЗАДАЧИ ПЕДАГОГИЧЕСКОЙ ПРАКТИКИ
  4. I. Решение логических задач средствами алгебры логики
  5. I. Розв’язати задачі
  6. I. Ситуационные задачи и тестовые задания.
  7. I. Цель и задачи дисциплины
  8. II. Основные задачи и функции
  9. II. Основные задачи и функции
  10. II. Решение логических задач табличным способом
  11. II. ЦЕЛИ, ЗАДАЧИ И ПРИНЦИПЫ ДЕЯТЕЛЬНОСТИ ВОИ
  12. II. Цель и задачи государственной политики в области развития инновационной системы

Если число переменных в прямой и двойственной задачах, образующих данную пару, равно двум, то, используя геометрическую интерпретацию задачи линейного программирования, можно легко найти решение данной пары задач.

Пример 3. Для задачи, состоящей в определении максимального значения функции при условиях

составить двойственную задачу и найти решение обеих задач.

Решение. Двойственной задачей по отношению к исходной является задача, состоящая в определении минимального значения функции при условиях

Как в исходной, так и в двойственной задаче число неизвестных равно двум. Следовательно, их решение можно найти, используя геометрическую интерпретацию задачи линейного программирования (рис. 7 и 8).

Как видно из рис. 7, максимальное значение целевая функция исходной задачи принимает в точке В. Следовательно, Х*= (2, 6) является оптимальным планом, при котором . Минимальное значение целевая функция двойственной задачи принимает в точке Е (рис. 8). Значит, Y *=(1; 4) является оптимальным планом двойственной задачи. Таким образом, значения целевых функций исходной и двойственной задач при их оптимальных планах равны между собой.

 

 

ü Двойственный симплекс-метод


1 | 2 | 3 | 4 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.002 сек.)