|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Пример 1.5Вспомним пример 1.1. Фирма производит две модели А и В сборных книжных полок. Их производство ограничено наличием сырья (высококачественных досок) и временем машинной обработки. Для каждого изделия модели А требуется 3 м2 досок, а для изделия модели В - 4 м2. Фирма может получить от своих поставщиков до 1700 м2 досок в неделю. Для каждого изделия модели А требуется 12 мин машинного времени, а для изделия модели В - 30 мин. В неделю можно использовать 160 ч машинного времени. Сколько изделий каждой модели следует фирме выпускать в неделю, если каждое изделие модели А приносит 2 дол. прибыли, а каждое изделие модели В - 4 дол. прибыли? Чтобы сформулировать эту задачу математически, обозначим через x 1количество выпущенных за неделю полок модели А, а через x 2- количество выпущенных полок модели В. Задача состоит в том, чтобы найти наилучшие значения x 1и x 2. Очевидно, наилучшими для данной задачи являются такие значения, которые максимизируют еженедельную прибыль. Предположим, что недельная продажа ограничена 450 полками. Тогда должно быть включено дополнительное ограничение x1+x2≤450. В виде уравнения оно записывается как x1+x2+x5=450, где Это ограничение нарушается оптимальным решением исходной задачи. Необходимо ли решать эту задачу с самого начала с новым включением? Если так поступить и повторить проведенные вычисления, то дополнительное ограничение выразится через небазисные переменные, которые можно получить из текущей канонической формы Поэтому уравнение x1+x2+x5=450 после исключения Последняя таблица будет иметь следующий вид (изменения - только вид дополнительного ограничения): Здесь возникают определенные трудности. В этой канонической форме для базиса Симплекс-метод можно определить как процедуру, начинающуюся с положительных значений базисных переменных и преобразующую задачу (сохраняя это свойство) к канонической форме (возможно, в несколько стадий), в которой все коэффициенты целевой функции неотрицательны. В двойственном симплекс-методе все наоборот; при его использовании не требуется, чтобы все базисные переменные были положительны с самого начала, но для задачи минимизации необходимо чтобы все коэффициенты целевой функции были неотрицательны. Сохраняя последнее свойство, ограничения с помощью двойственного симплекс-метода преобразуются до тех пор, пока не будет получен положительный базис, и в этот момент достигается минимум (при этом коэффициенты целевой функции сохраняются неотрицательными). В нашей задаче базисная переменная т. е. значение
В конечной таблице приведено оптимальное решение новой задачи:
Поскольку в этом решении
Литература. 1) Банди Б Основы линейного программирования, 1989г. 2) Грызина Н.Ю., Мастяева И.Н., Семенихина О.Н. Математические методы исследования операций в экономике: Учебно-методический комплекс. – М.: Изд. центр ЕАОИ, 2008. – 204 c. Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.004 сек.) |