АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Общее решение системы линейных уравнений. Если система линейных уравнений AX = B совместна, rank A = r и, например, - базисный минор матрицы системы

Читайте также:
  1. A) общее собрание акционеров
  2. I. Решение логических задач средствами алгебры логики
  3. I. Составление дифференциальных уравнений и определение передаточных функций
  4. I. Формирование системы военной психологии в России.
  5. I.СИСТЕМЫ ЛИНЕЙНЫХ УРАВНЕНИЙ. МЕТОД ГАУССА
  6. II. Органы и системы эмбриона: нервная система и сердце
  7. II. Решение логических задач табличным способом
  8. II. Цель и задачи государственной политики в области развития инновационной системы
  9. II. Экономические институты и системы
  10. III. Мочевая и половая системы
  11. III. Органы и системы эмбриона: пищеварительная система
  12. III. Разрешение споров в международных организациях.

 

Если система линейных уравнений AX = B совместна, rank A = r и, например, - базисный минор матрицы системы, то она равносильна системе

Придавая переменным (свободным переменным) получаем однозначно (например, по правилу Крамера) Тогда - решение исходной системы.


Метод Гаусса

 

Метод Гаусса - метод последовательного исключения переменных. С помощью элементарных преобразований строк расширенной матрицы D системы матрицу A системы приводят к ступенчатому виду:

Если среди чисел есть отличные от нуля, система несовместна.

Если то:

1) при r = n исходная система равносильна системе:

имеющей единственное решение (сначала находим из последнего уравнения , из предпоследнего и т. д.);

2) при r < n исходная система равносильна системе:

имеющей бесчисленное множество решений ( - свободные переменные).


Однородные системы линейных уравнений

 

Однородная система линейных уравнений AX = 0 всегда совместна. Она имеет нетривиальные (ненулевые) решения, если r = rank A < n.

Для однородных систем базисные переменные (коэффициенты при которых образуют базисный минор) выражаются через свободные переменные соотношениями вида:

Тогда n - r линейно независимыми вектор-решениями будут:

а любое другое решение является их линейной комбинацией. Вектор-решения образуют нормированную фундаментальную систему.

В линейном пространстве множество решений однородной системы линейных уравнений образует подпространство размерности n - r; - базис этого подпространства.

 


1 | 2 | 3 | 4 | 5 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.)