|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Общее решение системы линейных уравнений. Если система линейных уравнений AX = B совместна, rank A = r и, например, - базисный минор матрицы системы
Если система линейных уравнений AX = B совместна, rank A = r и, например, - базисный минор матрицы системы, то она равносильна системе Придавая переменным (свободным переменным) получаем однозначно (например, по правилу Крамера) Тогда - решение исходной системы.
Метод Гаусса - метод последовательного исключения переменных. С помощью элементарных преобразований строк расширенной матрицы D системы матрицу A системы приводят к ступенчатому виду: Если среди чисел есть отличные от нуля, система несовместна. Если то: 1) при r = n исходная система равносильна системе: имеющей единственное решение (сначала находим из последнего уравнения , из предпоследнего и т. д.); 2) при r < n исходная система равносильна системе: имеющей бесчисленное множество решений ( - свободные переменные).
Однородная система линейных уравнений AX = 0 всегда совместна. Она имеет нетривиальные (ненулевые) решения, если r = rank A < n. Для однородных систем базисные переменные (коэффициенты при которых образуют базисный минор) выражаются через свободные переменные соотношениями вида: Тогда n - r линейно независимыми вектор-решениями будут: а любое другое решение является их линейной комбинацией. Вектор-решения образуют нормированную фундаментальную систему. В линейном пространстве множество решений однородной системы линейных уравнений образует подпространство размерности n - r; - базис этого подпространства.
Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.002 сек.) |