АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Поляризация монохроматических волн

Читайте также:
  1. V3: Поляризация света
  2. Векторные волны. Поляризация.
  3. Вторая мировая война и поляризация послевоенного мира. Внешняя политика СССР в 1945-1953 гг. «Холодная война».
  4. Групповая поляризация
  5. Диэлектрики. Свободные и связанные заряды. Поляризация диэлектриков. Роль диэлектриков в конденсаторе.
  6. Естественный и поляризованный свет. Поляризация при отражении: закон Брюстера.
  7. НА ПОРОГЕ 70-Х ГОДОВ: ПОЛЯРИЗАЦИЯ СИЛ
  8. НА ПОРОГЕ 70-Х ГОДОВ: ПОЛЯРИЗАЦИЯ СИЛ 1 страница
  9. НА ПОРОГЕ 70-Х ГОДОВ: ПОЛЯРИЗАЦИЯ СИЛ 10 страница
  10. НА ПОРОГЕ 70-Х ГОДОВ: ПОЛЯРИЗАЦИЯ СИЛ 11 страница
  11. НА ПОРОГЕ 70-Х ГОДОВ: ПОЛЯРИЗАЦИЯ СИЛ 12 страница
  12. НА ПОРОГЕ 70-Х ГОДОВ: ПОЛЯРИЗАЦИЯ СИЛ 13 страница

В случае плоской монохроматической волны компоненты вектора напряженности электрического поля (также как и компоненты вектора напряженности магнитного поля) меняются совместно по гармоническому закону:

Здесь набег фазы .

Поляризационный эллипс

Преобразовав и сложив первые два уравнения, можно получить уравнение движения вектора :

, где разность фаз .

Эта квадратичная форма описывает эллипс. То есть конец вектора напряженности плоской монохроматической волны описывает эллипс. Для того, чтобы привести её к каноническому виду, нужно повернуть эллипс на угол :

Любой эллипс можно задать в параметрической форме:

Здесь и — амплитудные значения компонент вектора , соответствующие большой и малой полуосям эллипса. Из последних двух систем уравнений можно сделать следующий вывод:

,

где — вектор Пойнтинга. Таким образом, в плоской монохроматической волне величина вектора Пойнтинга равна сумме потоков в двух произвольных ортогональных направлениях. Вводя обозначения и , из тех же двух систем уравнений можно вывести соотношения:

и

.[3]

С помощью последних трех уравнений можно вычислить все параметры эллиптически поляризованной волны. А именно, зная величины и в произвольной системе координат, можно вычислить величину вектора Пойнтинга. С помощью разности фаз можно определить угол поворота большой оси эллипса относительно нашей системы координат, а также величины большой и малой полуосей эллипса и .

Направление вращения волнового вектора определяется разностью фаз . Если , тогда поляризация называется правой, а если, напротив, , поляризация называется левой. Если наблюдатель смотрит навстречу световому лучу, то правой поляризации соответствует движение конца вектора по часовой стрелке, а левой поляризации — против часовой стрелки. Если разность фаз равна , где — целое число, то эллипс вырождается в отрезок. Такая поляризация называется линейной. Другой важный случай возникает, когда и . В этом случае эллипс превращается в окружность, параметрическое уравнение которой имеет вид:

Нетрудно убедиться, что произвольная эллиптическая поляризация может быть разложена на сумму правой и левой круговых поляризаций.


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.)