АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Типовой расчет

Читайте также:
  1. I. Расчет накопительной части трудовой пенсии.
  2. I. Расчет производительности технологической линии
  3. I. Расчет размера страховой части трудовой пенсии.
  4. II. Расчетная часть задания
  5. RPPAYSP (РП. Спецификация расчетов)
  6. А). Расчет стоимости одного комплекта гуманитарной помощи с помощью функции СЛУЧМЕЖДУ
  7. Абсолютные и относительные показатели эффективности деятельности П в целом, их расчет.
  8. Административно- типовой период (1956г.)
  9. Аккредитивная форма расчетов
  10. Аккредитивная форма расчетов.
  11. АКТИВНО-ПАССИВНЫЕ СЧЕТА РАСЧЕТОВ
  12. Алгоритм расчета

«Векторная алгебра и аналитическая геометрия»

Задача 1. Если известны координаты точек и , то координаты вектора

Разложение этого вектора по ортам :

Длина вектора находится по формуле а направляющие косинусы равны Орт вектора

Пример 1. Даны точки

Разложить вектор по ортам и найти его длину, направляющие косинусы, орт вектора . Найдем координаты векторов:

и

Вектор

Контрольные варианты к задаче 1.

Даны точки А, В и С. Разложить вектор по ортам Найти длину, направляющие косинусы и орт вектора .

 

1. 2.
3. . 4.
5. 6.
7. 8.
9. 10.
11. 12.
13. 14.
15. 16.
17. 18.
19. 20.
21. 22.
23. 24.
25. 26.
27. 28.
29. 30.

 

 

Задача 2. Если даны векторы то скалярное произведение .

Тогда ; проекция вектора на направление вектора равна , условие перпендикулярности ненулевых векторов выглядит следующим образом: Условие коллинеарности векторов: .

Пример 2. Даны вершины треугольника Найти угол при вершине А и проекцию вектора на сторону АС. С

Внутренний угол при вершине А образован векторами ,

А В

Тогда

Проекция на направление вектора :

Контрольные варианты к задаче 2

Даны точки А, В и С из задания 1. Найти угол при вершине А и проекцию вектора на сторону АС.

Задача 3. Площадь параллелограмма, построенного на векторах

можно найти по формуле а площадь треугольника, построенного

на этих векторах: где

Определитель второго порядка вычисляется по формуле: .

 

Пример 3. Даны вершины треугольника Найти его площадь и длину высоты, опущенной из вершины С.

. Находим векторы

 

Векторное произведение

Длина полученного вектора равна:

Так как где длина высоты, опущенной из вершины С на сторону АВ, .

Контрольные варианты к задаче 3

Даны точки А, В и С из задания 1, которые являются вершинами .

Найти его площадь и длину высоты, опущенной из вершины С.

 

Задача 4. Если даны координаты , то смешанное произведение векторов вычисляют по формуле

 

.

 

Объемы параллелепипеда и тетраэдра (треугольной пирамиды), построенных на векторах находятся с помощью смешанного произведения векторов:

 

,

Если > 0, то тройка векторов - правая.

Если < 0, то тройка левая.

Если = 0, то векторы компланарны.

Пример 4. Дан тетраэдр построенный на векторах и Найти высоту, проведенную из вершины на грань ABD.

Объем равен произведению площади основания на высоту:

 

находится также по формуле , поэтому

.

Вычислим векторное произведение =

 

 

 

Тогда

Контрольные варианты к задаче 4

1. Найти объем треугольной пирамиды, построенной на векторах ,

и .

2. Найти объем треугольной пирамиды с вершинами ,

3. Найти объем треугольной пирамиды с вершинами:

4. Найти объем треугольной пирамиды, вершины которой находятся в точках

и

5. Найти объем треугольной пирамиды с вершинами .

6. Найти объем треугольной пирамиды с вершинами в точках

и

7. Вершины треугольной пирамиды находятся в точках и

8.Найти объем треугольной пирамиды, образованной векторами .

9. Найти объем треугольной пирамиды, образованной векторами

10. Найти объем треугольной пирамиды, образованной векторами .

 

Задача 5. Даны координаты вершин пирамиды ; .

1. Найти длину вектора .

2. Найти угол между векторами .

3. Найти проекцию вектора на вектор .

4. Найти площадь грани АВС.

5. Найти объем пирамиды ABCD.

Координаты векторов:

1. Длина вектора

 

2.

 

       
   
 
 


 

3. Проекция вектора на вектор

 

 

4.

 

5.

 

Контрольные варианты к задаче 5

Даны координаты вершин пирамиды ABCD. Требуется найти:

1) длины векторов

2) угол между векторами

3) проекцию вектора на вектор

4) площадь грани АВС;

5) объем пирамиды ABCD.

 

1. , ,
2. , ,
3. , ,
4. , ,
5. , ,
6. , ,
7. , ,
8. , ,
9. , ,
10. , ,
11. , ,
12. , ,
13. , ,
14. , ,
15. , ,
16. , ,
17. , ,
18. , ,
19. , ,
20. , ,
21. , ,
22. , ,
23. , ,
24. , ,
25. , ,
26. , ,
27. , ,
28. , ,
29. , ,
30. , ,

 

 

З а д а ч а 6 Общее уравнение плоскости имеет вид: , где - ненулевой вектор, перпендикулярный плоскости (нормальный вектор плоскости).

Уравнение плоскости, проходящей через три данные точки , и определяется равенством

 

,т.к.

Векторы лежат в одной плоскости, т.е. их смешанное произведение равно нулю . Точка является текущей,т.е. произвольной точкой плоскости.

Расстояние от точки до плоскости находится по формуле .


1 | 2 | 3 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.02 сек.)