АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Классификация запоминающих устройств

Читайте также:
  1. Data Mining и Business Intelligence. Многомерные представления Data Mining. Data Mining: общая классификация. Функциональные возможности Data Mining.
  2. FECONCL (ББ. Экономическая классификация)
  3. I Классификация кривых второго порядка
  4. I. Внутреннее государственное устройство само по себе
  5. I.Основное городское благоустройство (базис)
  6. II. Классификация документов
  7. IX.4. Классификация наук
  8. MxA классификация
  9. Автоматические средства пожаротушения. Устройство спринклерных и дренчерных систем пожаротушения.
  10. АВТОМАТИЧЕСКОЕ ЗАРЯДНОЕ УСТРОЙСТВО
  11. Аденовирусная инфекция. Этиология, патогенез, классификация, клиника фарингоконъюнктивальной лихорадки. Диагностика, лечение.
  12. Административно-политическое устройство в Крымском ханстве 1 страница

Запоминающие устройства можно классифицировать по целому ряду параметров и признаков. На рис.5.1 представлена классификация по типу обращения и организации доступа к ячейкам ЗУ.


Рис. 5.1. Классификация запоминающих устройств

По типу обращения ЗУ делятся на устройства, допускающие как чтение, так и запись информации, и постоянные запоминающие устройства (ПЗУ), предназначенные только для чтения записанных в них данных (ROM - read only memory). ЗУ первого типа используются в процессе работы процессора для хранения выполняемых программ, исходных данных, промежуточных и окончательных результатов. В ПЗУ, как правило, хранятся системные программы, необходимые для запуска компьютера в работу, а также константы. В некоторых ЭВМ, предназначенных, например, для работы в системах управления по одним и тем же неизменяемым алгоритмам, все программное обеспечение может храниться в ПЗУ.

В ЗУ с произвольным доступом (RAM - random access memory) время доступа не зависит от места расположения участка памяти (например, ОЗУ).

В ЗУ с прямым (циклическим) доступом благодаря непрерывному вращению носителя информации (например, магнитный диск - МД) возможность обращения к некоторому участку носителя циклически повторяется. Время доступа здесь зависит от взаимного расположения этого участка и головок чтения/записи и во многом определяется скоростью вращения носителя.

В ЗУ с последовательным доступом производится последовательный просмотр участков носителя информации, пока нужный участок не займет некоторое нужное положение напротив головок чтения/записи (например, магнитные ленты - МЛ).

Как отмечалось выше, основные характеристики запоминающих устройств - это емкость и быстродействие. Идеальное запоминающее устройство должно обладать бесконечно большой емкостью и иметь бесконечно малое время обращения. На практике эти параметры находятся в противоречии друг другу: в рамках одного типа ЗУ улучшение одного из них ведет к ухудшению значения другого. К тому же следует иметь в виду и экономическую целесообразность построения запоминающего устройства с теми или иными характеристиками при данном уровне развития технологии. Поэтому в настоящее время запоминающие устройства компьютера, как это и предполагал Нейман, строятся по иерархическому принципу (рис. 5.2).


Рис. 5.2. Иерархическая организация памяти в современных ЭВМ

Иерархическая структура памяти позволяет экономически эффективно сочетать хранение больших объемов информации с быстрым доступом к информации в процессе ее обработки.

На нижнем уровне иерархии находится регистровая память - набор регистров, входящих непосредственно в состав микропроцессора (центрального процессора - CPU). Регистры CPU программно доступны и хранят информацию, наиболее часто используемую при выполнении программы: промежуточные результаты, составные части адресов, счетчики циклов и т.д. Регистровая память имеет относительно небольшой объем (до нескольких десятков машинных слов). РП работает на частоте процессора, поэтому время доступа к ней минимально. Например, при частоте работы процессора 2 ГГц время обращения к его регистрам составит всего 0,5 нс.

Оперативная память - устройство, которое служит для хранения информации (программ, исходных данных, промежуточных и конечных результатов обработки), непосредственно используемой в ходе выполнения программы в процессоре. В настоящее время объем ОП персональных компьютеров составляет несколько сотен мегабайт. Оперативная память работает на частоте системной шины и требует 6-8 циклов синхронизации шины для обращения к ней. Так, при частоте работы системной шины 100 МГц (при этом период равен 10 нс) время обращения к оперативной памяти составит несколько десятков наносекунд.

Для заполнения пробела между РП и ОП по объему и времени обращения в настоящее время используется кэш-память, которая организована как более быстродействующая (и, следовательно, более дорогая) статическая оперативная память со специальным механизмом записи и считывания информации и предназначена для хранения информации, наиболее часто используемой при работе программы. Как правило, часть кэш-памяти располагается непосредственно на кристалле микропроцессора (внутренний кэш), а часть - вне его (внешняя кэш-память). Кэш-память программно недоступна. Для обращения к ней используются аппаратные средства процессора и компьютера.

Внешняя память организуется, как правило, на магнитных и оптических дисках, магнитных лентах. Емкость дисковой памяти достигает десятков гигабайт при времени обращения менее 1 мкс. Магнитные ленты вследствие своего малого быстродействия и большой емкости используются в настоящее время в основном только как устройства резервного копирования данных, обращение к которым происходит редко, а может быть и никогда. Время обращения для них может достигать нескольких десятков секунд.

Следует отметить, что электронная вычислительная техника развивается чрезвычайно быстрыми темпами. Так, согласно эмпирическому "закону Мура", производительность компьютера удваивается приблизительно каждые 18 месяцев. Поэтому все приводимые в данном пособии количественные характеристики служат по большей части только для отражения основных соотношений и тенденций в развитии тех или иных компонентов и устройств компьютеров.


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.)