АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Пусть шифр студента 1298

Читайте также:
  1. А) организация деятельности студента по видам учебных занятий
  2. Анкета оценки уровня обучения студента курса «Системный анализ»
  3. Б) задания для самостоятельной работы студента
  4. Виды внеаудиторной самостоятельной работы. Реферативная научная деятельность студента
  5. Г. – проведен судебный процесс над львовскими студентами, по результату которого 42 человека была расстреляно.
  6. График самостоятельной работы студента
  7. Два студента из Ирака
  8. Для студента
  9. Задание студентам
  10. Задание студентам
  11. ЗМІСТ САМОСТІЙНОЇ РОБОТИ СТУДЕНТА
  12. Знание неконституционным законопроекта, пусть даже принято-

Номер варианта второго задания: . Промежуток 26-20=6. Таким образом, во втором задании студент решает задачу вариант №6.
1 Решение систем линейных уравнений методами Крамера и Гаусса

Пусть дана система n уравнений с n неизвестными:

Основная матрица А такой системы квадратная. Определитель этой матрицы

называется определителем системы.

Если определитель системы отличен от нуля, то система называется невырожденной и имеет единственное решение.

В дальнейшем мы будем иметь дело только с такими системами.

Наиболее простым методом для решения таких систем линейных уравнений является метод Крамера.

Формулы Крамера имеют вид:

(1.1.1)

Более универсальным и эффективным является метод Гаусса, состоящий в последовательном исключении неизвестных.

Решение осуществляется в два этапа: 1) система приводится к треугольному виду, 2) последовательно определяют неизвестные .

Пример 1.

Решить систему уравнений методами Крамера и Гаусса:


Решение:

а) Метод Крамера.

Найдем определитель системы , . Предварительно сложив второй столбец с третьим и разложив определитель по элементам последнего столбца.

= =2(-1) =-2(-2-3)=10 .

Так как , то система имеет единственное решение.

Найдем определители и , заменив в матрице коэффициентов соответственно первый, второй, третий столбцы столбцом свободных членов (при вычислении определителя преобразования аналогичные предыдущему.)

= =2(-1) -2(-1-4)=10.

При вычислении определителя последнюю строку складываем с первой и вычитаем из второй строки. Разлагаем по элементам последнего столбца.

= =1(-1) =10+10=20.

При вычислении определителя последнюю строку складываем с первой и со второй строки и разлагаем получившийся определитель по элементам второго столбца.

= =-1(-1) =50-20=30.

Подставляя найденные значения в формулы (1.1.1), получим:

х= у= z=

б) Метод Гаусса.

Составим расширенную матрицу системы:

Разрешающим элементом удобно иметь единицу, поэтому переставим второе уравнение на место первого.

Получим нули в первом столбце, умножив первое уравнение последовательно на (-2) и (-3) и складывая со вторым и третьим.

(-2) (-3)

 

С помощью второго элемента второй строки сделаем нуль во втором столбце третьей строки, для чего умножим вторую строку на (-2) и сложим с третьей.

 

(-2) .

Таким образом, свели матрицу к треугольному виду. Запишем полученную систему уравнений:

Из последнего уравнения сразу находим значение z=3, подставляя которое во второе уравнение находим у=11-3z=11-9=2. Затем из первого уравнения найдем

х=1, у=2, z=3.

 

Вопросы для самопроверки

1. Что называется определителем системы?

2. Когда система линейных уравнений имеет единственное решение?

3. Напишите формулы Крамера для решения системы трех линейных уравнений с тремя неизвестными.

4. В чем заключается основная идея метода Гаусса?

5. Какой из рассмотренных методов решения системы линейных уравнений показался Вам более простым?

 


1 | 2 | 3 | 4 | 5 | 6 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.005 сек.)