|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Конструирование высотных зданийКонструирование высотных зданий имеет свою специфику с точки зрения объемной формы, пропорций, выбора конструктивных систем и элементов зданий. В связи с интенсивностью ветровых воздействий основным вариантом формы здания является башенная с повышенной устойчивостью в обоих направлениях (благодаря развитому поперечному сечению) и обтекаемостью объема (цилиндрического, пирамидального, призматического со скругленными углами). Для уменьшения горизонтальных перемещений верха зданий во избежание перекосов ограждающих конструкций и нарушений в работе лифтов с увеличением этажности здания отношение его ширины к высоте не должно быть меньше 1/8 – 1/10. Горизонтальные несущие конструкции высотных зданий, как правило, однотипны, и обычно представляют собой жесткий несгораемый диск – железобетонный (монолитный, сборно монолитный, сборный) либо сталежелезобетонный Конструктивная система высотного здания представляет собой взаимосвязанную совокупность его вертикальных и горизонтальных несущих конструкций, совместно обеспечивающих прочность, жесткость и устойчивость сооружения. Горизонтальные конструкции – перекрытия и покрытия здания воспринимают приходящиеся на них вертикальные и горизонтальные нагрузки и воздействия, передавая их поэтажно на вертикальные несущие конструкции. Последние, в свою очередь, передают эти нагрузки и воздействия через фундаменты основаню. Горизонтальные несущие конструкции высотных зданий, как правило, однотипны, и обычно представляют собой жесткий несгораемый диск – железобетонный (монолитный, сборно монолитный, сборный) либо сталежелезобетонный. Вертикальные несущие конструкции более разнообразны. Различают стержневые (каркасные) несущие конструкции, плоскостные (стеновые, диафрагмовые), внутренние объемно-пространственные стержни с полым сечением на высоту здания (стволы жесткости), объемно-пространственные наружные конструкции на высоту здания в виде тонкостенной оболочки замкнутого сечения. Соответственно примененному виду вертикальных несущих конструкций различают четыре основные конструктивные системы высотных зданий – каркасную (рамную), стеновую (бескаркасную, диафрагмовую), ствольную и оболочковую. Основные системы ориентированы на восприятие всех силовых воздействий одним типом несущих элементов. Так, например, при стержневых конструкциях узлы сопряжения колонн с ригелями должны быть жесткими (рамными) в обоих направлениях, чтобы обеспечить восприятие вертикальных и горизонтальных воздействий. Наряду с основными широко применяют и комбинированные конструктивные системы. В комбинированной системе могут сочетаться несколько типов вертикальных несущих элементов (плоскостных, стержневых, объемно-пространственных) и схем их работы (например, рамно-связевая или связевая). При таких сочетаниях полностью или частично дифференцируется восприятие нагрузок и воздействий (например, горизонтальных – стенами жесткости, а вертикальных – каркасом). Такое разделение часто позволяет упростить построечные работы или более четко увязать конструктивную систему с планировочной. Соответственно количество возможных вариантов комбинированных систем весьма обширно. Стеновая система, которая на протяжении столетий была основной для зданий любого назначения, в высотном строительстве применяется редко и преимущественно для жилых зданий и гостиниц, где мелкоячеистая планировочная структура совпадает с конструктивной. Самое высокое из построенных зданий стеновой системы – 47-этажный жилой дом «Конкордия Хаус» в Кельне имеет поперечно-стеновую конструктивную систему (шаг стен 4,5 м) и выполнено с монолитными железобетонными несущими внутренними стенами и перекрытиями. Малый объем использования стеновой системы и ориентацию ее применения только на жилище можно объяснить лишь тривиальным восприятием системы в поперечно-стеновом варианте с сопутствующими ему ограничениями свободы планировки. Каркасно-рамная конструктивная система, послужившая основой для создания небоскребов на рубеже XIX–XX вв., и до настоящего времени достаточно широко применяется при строительстве зданий высотой до 60 этажей (в варианте со стальным, позднее – с железобетонным каркасом). На ее применении основано проектное решение таких выдающихся объектов, как 59-этажное многофункциональное здание «Пан-Америка» (арх. В. Гропиус) в Нью-Йорке или 50-этажное «Трансамерика билдинг» в Сан-Франциско (арх. У. Перейра). Появление современного бетонного оборудования открыло перед строителями принципиально новые возможности доставки бетона как по высоте (до 400 м), так и по дальности (до 2 км) Однако с ростом этажности неизбежное усложнение конструкции рамных узлов для восприятия возрастающих горизонтальных нагрузок диктует переход к связевому каркасу со сквозными раскосными стальными вертикальными диафрагмами жесткости или со сплошными железобетонными стенами – диафрагмами жесткости. К наиболее поздним примерам применения торцевых сквозных диафрагм жесткости в каркасных зданиях относятся Олимпийская гостиница в Барселоне (арх. Ф. Герц, 1992 г.), здания офиса в Токио (арх. Н. Фостер, 1991 г.), офис фирмы Sony в Берлине (арх. Х. Ян, 2000 г.). В течение столетия конструкции стальных каркасов пережили много модификаций в расчетных схемах (рамная, рамно-связевая, связевая), типах сечений элементов (прокатных, открытого и закрытого сечения, и сварных) и способах соединений – заклепочных, сварных, болтовых. Широко распространилось изготовление на заводах металлоконструкций укрупненных отправочных марок, объединяющих по нескольку элементов (колонн, ригелей), что обеспечивает резкое сокращение сроков монтажа и его большую точность. Отечественная инженерная школа стала пионером исследований и внедрения в высотное строительство железобетонных конструкций с жесткой арматурой. Это произошло в 1947–1951 гг. при возведении «сталинских высоток» в Москве у Красных ворот и на Смоленской площади. С середины 1950-х гг. сборный железобетонный каркас (с гибкой арматурой) станет по существу основной несущей конструкцией зданий высотой до 35 этажей в обычных условиях и до 20 – в «сейсмике». В последние десятилетия центром исследований сборных железобетонных каркасов стала Япония. Там разработаны и внедрены с 1970 х гг. в высотное строительство сборные сейсмостойкие каркасы из высокопрочных бетонов (классов В60-В100). Испытания, проведенные японскими учеными, подтвердили возможность возведения высотных зданий в условиях высокой сейсмичности. С 1960 х годов в высотное строительство активно внедряются вновь изобретенные конструктивные системы – ствольная и оболочковая. Их изобретение запатентовано американским инженером Ф. Каном (Khan) в 1961 г. Ствольная конструктивная система в качестве основной несущей конструкции здания, воспринимающей нагрузки и воздействия, содержит вертикальный пространственный стержень – ствол жесткости (закрытого или открытого сечения) на всю высоту здания. Поскольку ствол чаще всего располагают в геометрическом центре плана, возник и распространенный термин «ядро жесткости». Ствольная система органично вошла в практику высотного строительства, так как удачно сочеталась с планировочной схемой здания. Здесь совместилось расположение стен центрального узла вертикальных коммуникаций (лифтовых шахт и холлов) и ствола жесткости. Наилучшие условия для пространственной работы конструкций ствольных зданий обеспечивает строго центральное расположение ствола в плане и геометрическое подобие форм планов здания и ствола при площади «ядра жесткости» около 20% площади плана здания. Наибольшее распространение в строительстве зданий различного назначения (офисы, гостиницы, жилище) высотой до 60 этажей получила комбинированная каркасно-ствольная система, преимущественно с расположением каркаса только по наружному контуру здания. Совместность горизонтальных перемещений каркаса и ствола обеспечивают горизонтальные аутригеры-ростверки, расположенные через 18–20 этажей. Несущие конструкции ствольных зданий преимущественно железобетонные. Сечение стен монолитного ствола в зависимости от этажности меняется от 40–100 см, в нижних этажах до 20–30 см в верхних. В редких случаях ствол представляет собой стоечно-балочную стальную обетонированную решетчатую клетку. Оболочковая конструктивная система отличается максимальной жесткостью среди рассмотренных в связи с тем, что несущие конструкции расположены по внешнему контуру. Поэтому она наиболее часто применяется в проектировании самых высоких зданий – 200 м и выше. Основной оболочковой системе сопутствуют две комбинированных – оболочково-ствольная («труба в трубе») и оболочково-диафрагмовая («пучок труб»). Как в основной-оболочковой, так и в комбинированной – оболочково-ствольной, в центре плана располагают ствол с размещенными в его пространстве лифтовыми шахтами и холлами. Различие между вариантами заключается в предусмотренном проектом распределении горизонтальной нагрузки: только на оболочку (при этом ствол работает только на вертикальные нагрузки от перекрытий) либо на оболочку и ствол. В последнем варианте несколько утяжеляются конструкции перекрытий в связи с их включением в работу на горизонтальные воздействия. Тем не менее большинство высотных зданий оболочкового типа построено на оболочково-ствольной системе, хотя отдельные выдающиеся объекты (например, 110-этажные башни-близнецы WTC в Нью-Йорке и 100-этажное здание Хинкок-билдинг в Чикаго) имели (имеют) основную оболочковую конструктивную систему. Индивидуальной специфической задачей проектирования оболочковых зданий стало решение конструкции несущей наружной оболочки, совмещающей несущие и ограждающие функции. В течение последних десятилетий прошли внедрение целый ряд конструкций:
При дальнейшем возрастании высоты здания жесткость рассмотренных конструкций оболочек может быть недостаточной. С этой целью в нереализованных до настоящего времени проектах предложено устройство оболочек из перекрестно-стержневых структур с такой же конструкцией горизонтальных аутригеров-ростверков. Средством повышения жесткости оболочки может служить также переход от оболочковой к оболочково-диафрагмовой конструкции («пучку труб»). Конструкцию оболочки выполняют как из стальных элементов, так и из железобетона. Железобетонные оболочки выполняют монолитными или сборными, но чаще всего из конструктивного легкого бетона, совмещая несущие и теплоизолирующие функции стены. В последние годы оболочки в Европе выполняют преимущественно монолитными из тяжелого бетона (перфорированная стена) с последующим утеплением и внешней облицовкой. Для элементов стальных оболочек чаще всего применяют прокатные или сварные элементы закрытого прямоугольного сечения также с последующим утеплением и облицовкой. Конструкции высотных зданий непрерывно совершенствуются и становятся все более разнообразными. В последнее десятилетие получают активное внедрение трубобетонные конструкции железобетонного каркаса. Их высокая несущая способность способствовала пересмотру сложившегося за последние 30 лет подхода к назначению для зданий выше 300 м только оболочковой конструктивной системы. Так, например, при возведении в Куала-Лумпуре в 1998 г. двух башен Петронас-Тауэр высотой по 452 м успешно прошла апробацию каркасно-ствольная система с трубобетонным каркасом. Не менее специфичны и отдельные конструкции и элементы высотных зданий, на решении которых от фундамента до крыши сказываются требования комплексной безопасности.
Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.005 сек.) |