АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Классификация полупроводниковых электронных приборов

Читайте также:
  1. Data Mining и Business Intelligence. Многомерные представления Data Mining. Data Mining: общая классификация. Функциональные возможности Data Mining.
  2. FECONCL (ББ. Экономическая классификация)
  3. I Классификация кривых второго порядка
  4. II. Классификация документов
  5. IX.4. Классификация наук
  6. MxA классификация
  7. Аденовирусная инфекция. Этиология, патогенез, классификация, клиника фарингоконъюнктивальной лихорадки. Диагностика, лечение.
  8. Акустические колебания, их классификация, характеристики, вредное влияние на организм человека, нормирование.
  9. Амплитудно частотные характеристики различных приборов, измеряющих частоту электрических сигналов.
  10. Аналитическая классификация катионов
  11. Аналитические методы при принятии УР, основные аналитические процедуры, признаки классификации методов анализа, классификация по функциональному признаку.
  12. Антраценпроизводные: строение, классификация, био-фармакологическое действи

РАЗДЕЛ II

ОСНОВЫ ПРОМЫШЛЕННОЙ ЭЛЕКТРОНИКИ

Тема № 4 ЭЛЕКТРОННЫЕ ПРИБОРЫ

Лекция 11. Полупроводниковые приборы

 

 

Электроника – это наука, изучающая принципы построения, работы и применения различных электронных приборов. Именно применение электронных приборов позволяет построить устройства, обладающие полезными для практических целей функциями – усиление электрических сигналов, передачу и прием информации (звук, текст, изображение), измерение параметров, и т.д.

Первый электронный прибор был создан в Англии в 1904 г. Это был электровакуумный диод, лампа с односторонней проводимостью тока. Очень быстро (за 30 лет) было разработано много типов электровакуумных приборов. Обладая достаточно высокими качественными показателями, они имели существенные недостатки: большие габариты, большую потребляемую мощность и малый срок работы. Эти недостатки серьезно мешали изготовлению сложных многофункциональных устройств.

В тридцатых годах началась интенсивная исследовательская работа по созданию полупроводниковых электронных приборов. За относительно короткий промежуток времени было создано такое многообразие полупроводниковых приборов, которое качественно позволило выполнить все функции электровакуумных приборов. А так как полупроводниковые приборы имеют малую потребляемую мощность, высокую надежность, малую массу и размеры, то уже к началу 70-х годов они практически полностью вытеснили электровакуумные электронные приборы. Большой вклад в развитие полупроводниковых электронных приборов внесли советские ученые Лосев, Френкель, Курчатов, Давыдов, Туркевич и многие другие.

 

Классификация полупроводниковых электронных приборов

Полупроводниковые приборы разделяют по их функциональному назначению, а также по количеству электронно-дырочных переходов. Напоминаю, что электронно-дырочный переход это промежуточный переходный слой между двумя областями полупроводника, одна из которых имеет электронную проводимость (n-типа), а другая – дырочную (р-типа). Вся совокупность полупроводниковых приборов разделяется на беспереходные, с одним, двумя и более переходами (рис 12.1)

Применение беспереходных приборов основано на использовании физических процессов, происходящих в объеме полупроводникового материала. Приборы, в которых используется зависимость электрического сопротивления полупроводника от температуры, называются термисторами. В эту группу приборов входят терморезисторы (их сопротивление на несколько порядков падает при увеличении температуры), а также позисторы (их сопротивление увеличивается с увеличением температуры). Терморезисторы и позисторы применяются для измерения и регулирования температуры, в цепях автоматики и т.д.

Рис.12.1

 

В качестве нелинейных сопротивлений применяются полупроводниковые приборы, в которых используется зависимость сопротивления от величины приложенного напряжения. Такие приборы называются варисторами. Их применяют для защиты электрических цепей от перенапряжения, в цепях стабилизации и преобразования физических величин.

Фоторезистор, это прибор, в светочувствительном слое которого при облучении светом возникает избыточная концентрация электронов, а значит их сопротивление уменьшается.

Большую группу представляют полупроводниковые приборы с одним р-n переходом и двумя выводами для включения в схему. Их общее название – диоды. Различают диоды выпрямительные, импульсные и универсальные. К этой группе относятся стабилитроны (они применяются для стабилизации токов и напряжений за счет значительного изменения дифференциального сопротивления пробитого р -n перехода). Варикапы (емкость их р-n перехода зависит от величины приложенного напряжения), фото и светодиоды и т.п.

Полупроводниковые приборы с двумя и более р-n переходами, тремя и более выводами называются транзисторами. Очень большое количество транзисторов, различающихся по функциональным и другим свойствам, разделяют на две группы – биполярные и полевые. К этой же группе приборов (с тремя и более р-n переходами) можно отнести приборы переключения – тиристоры.

Самостоятельную группу приборов представляют интегральные микросхемы (ИМС). ИМС – это изделие, выполняющее определенную функцию преобразования или обработки сигнала (усиление, генерация, АЦП и т.д.) Они могут содержать десятки и сотни р-n переходов и других электрически соединенных элементов. Все интегральные микросхемы делятся на два сильно отличающихся друг от друга класса:

- полупроводниковые ИМС;

-гибридные ИМС.

Полупроводниковые ИМС представляют полупроводниковый кристалл, в толще которого выполняются диоды, транзисторы, резисторы и другие элементы. Они имеют высокую степень интеграции, малую массу и габариты.

Основу гибридной ИМС представляет пластина диэлектрика, на поверхности которой в виде пленок нанесены компоненты схемы и соединения (в основном пассивные элементы).

Кроме деления по количеству р-n переходов и функциональному назначению полупроводниковые приборы разделяются по величинам предельно допускаемой мощности и частоты (см.рис. 12.2.)

 

Рис. 12.2.

 

2. Типы проводимости полупроводниковых материалов.

Электронно-дырочный переход. Основные параметры

полупроводниковых диодов.

 

Типы проводимости полупроводниковых материалов и свойства электронно-дырочного перехода рассматривались в курсе молекулярной физики, раздел «Электричество». Поэтому сейчас выделим лишь основные положения этих вопросов.

В чистом полупроводнике, при температуре выше абсолютного нуля по шкале Кельвина генерируется два вида подвижных носителей зарядов – электрон и дырка. При наличии таких носителей полупроводник приобретает способность проводить электрический ток. Электропроводность, обусловленная только генерацией пар электрон-дырка, называется собственной. Количественно она может быть определена выражением

 

,

где:

 

g = 1,6 × 10-19 K – заряд электрона;

n и p – концентрация подвижных электронов и дырок, причем n=p;

mn и mp – подвижность носителей.

Концентрация подвижных носителей заряда зависит от температуры, поэтому:

 

,

где:

А – константа;

Т - температура по Кельвину;

W – ширина запретной зоны;

К = 1,38 × 10-23 – постоянная Больцмана.

Проводимость полупроводников существенно изменяется при добавлении примеси. Так, если валентность примеси больше валентности полупроводника (например атомы фосфора), то концентрация электронов существенно (на 10 – 20 порядков) увеличивается. Поэтому количественно проводимость может быть вычислена выражением

 

 

где nn – концентрация примесных носителей.

Такая примесь называется донорной, проводимость – электронной, а полупроводник – полупроводником n типа.

При добавлении примеси, валентность которой меньше валентности полупроводника (например, атомы бора), в теле полупроводника резко увеличивается концентрация дырок. Поэтому

 

,

 

где:

РР - концентрация примесных носителей.

Такая примесь называется акцепторной, проводимость - дырочной, а полупроводник - полупроводником p - типа.

Металлургическая граница между полупроводниками двух типов называется электронно-дырочным или p-п переходом. Это основной рабочий элемент полупроводниковых электронных приборов. Выделим следующие его свойства.

1. При отсутствии внешнего электрического поля у границы p-п перехода образуется объемные заряды электронов в p области и дырок в п области. Перепад потенциала зарядов образует потенциальный барьер , причем

 

 

,

 

где: - концентрация ионизированных атомов в полупроводнике;

 

- температурный потенциал, при Т =3000К, .

В непосредственной близости от границы перехода образуется слой полупроводника обедненного носителями зарядов. Проводимость этого слоя мала и его называют запирающим. Сопротивление р-п перехода определяется толщиной запирающего слоя.

В установившемся режиме через р-п переход протекают диффузионные токи электронов in диф и дырок iР диф,а также дрейфовые (обратные) токи электронов in др и дырок iР др, причем

in диф = - in др;

iР диф = - iР др.

Поэтому результирующий ток равен нулю.

 

2. При обратном включении р-n перехода (минус к Р области, плюс к n области) запирающий слой расширяется. Сопротивление р-п перехода увеличивается (до 104 Ом). Практически все напряжение внешнего источника подает на этом сопротивлении, увеличивая высоту потенциального барьера , причем

.

 

Этот барьер препятствует диффузионным токам, уменьшая их до нуля (в зависимости от величины ). Значение дрейфовых токов остается прежним или несколько возрастает в зависимости от теплового режима полупроводника.

 

3. При прямом включении р-п перехода (плюс к р области, минус к n области), запирающий слой уменьшается. Сопротивление р-n перехода подает (до п 100 Ом). Теперь падение напряжения встречно потенциальному барьеру , причем

.

 

Это приводит к увеличению диффузионных токов, которые называют прямыми, и обозначают Iпр.

Таким образом, р-n переход обладает односторонней проводимостью. Это основное свойство целого класса полупроводниковых электронных приборов, называемых диодами. Напомню, что диод это полупроводниковый электронный прибор с одним р-n переходом и двумя выводами. Условное графическое обозначение диода приведено на рис. 12.3а.

Часто вывод, к которому подключают "+" источника питания при прямом включении, называют анодом. Второй вывод - катодом.

Диоды характеризуются следующими основными параметрами:

Среднее значение прямого тока и напряжения.

Среднее значение обратного тока.

Максимально допустимое прямое и обратное напряжение.

Максимально допустимое значение прямого тока.

Максимально допустимые мощность, частота, границы температуры окружающей среды и др.

 

Обобщенной характеристикой диодов является вольтамперная характеристика, т.е. зависимость тока диода от приложенного к нему напряжения (рис. 12.3б). Она описывается выражением

,

где:

- приложенное напряжение;

- обратный (дрейфовый) ток, который часто называют тепловым.

Так как при комнатной температуре , то при прямых напряжениях выше 0,1 В значением единицы в последнем выражении можно пренебречь. Значит, прямой ток через диод изменяется по экспоненциальному закону.

При обратных напряжениях >0,1 В экспоненциальный член выражения становится пренебрежимо малым по сравнению с единицей. Им можно пренебречь. Значит, при обратном включении ток через диод становится очень малым, меняет знак на обратный и не зависит от приложенного напряжения.

 


1 | 2 | 3 | 4 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.01 сек.)