|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Биполярные транзисторы
Транзисторы - это электронные приборы, предназначенные для усиления и преобразования сигналов. Наиболее распространены транзисторы с двумя р-п переходами и тремя выводами. Их называют биполярными, так как в работе используются носители обоих знаков. Среднюю область называют базой, одну из крайних областей эмиттером, а другую коллектором. В зависимости от типа электропроводимости крайних областей существуют транзисторы р-п-р или п-р-п структуры. На рис. 5а приведено схемное обозначение транзистора р-п-р, а на рис. 5б - транзистора п-р-п типа. В качестве исходного материала транзисторов используют германий или кремний. При изготовлении транзисторов обязательно должны быть выполнены два условия: 1) толщина базы (расстояние между эмиттерным и коллекторным переходами) должна быть малой по сравнению с длиной свободного пробега носителей заряда; 2) концентрация примесей в эмиттере должна быть значительно больше, чем в базе. В зависимости от напряжения на р-п переходах транзистор может работать в одном из трех режимах: - в активном режиме - когда на эмиттерном переходе напряжение прямое, а на коллекторном обратное; - в режиме отсечки (запирания) - когда на оба перехода поданы обратные напряжения; - в режиме насыщения - когда на оба перехода поданы прямые напряжения. Рассмотрим работу транзистора п-р-п в активном режиме. В цепь источника коллекторного напряжения - ЕК транзистор включают последовательно с резистором RК. На вход транзистора подается управляющая ЭДС- Е (рис. 12.6а). При таком включении эмиттер является общей точкой входной и выходной цепей. Поэтому оно называется включением с общим эмиттером. При отсутствии напряжений (ЕК =0; Е =0) р-п переходы находятся в состоянии равновесия. Токи через них равны нулю. Внешние источники включают так, чтобы на эмиттерном переходе было прямое напряжение (плюс источника Е подан на базу, минус - на эмиттер), а на коллекторном переходе - обратное (плюс источника ЕК - на коллектор, минус - на эмиттер). Обычно ЕК >> Е . Поэтому:
.
Под воздействием прямого напряжения Uбэ начинается усиленная диффузия электронов из эмиттера в базу, образуя ток эмиттера Iэ. Так как база транзистора выполняется тонкой, основная часть электронов достигает коллекторного перехода не попадая в центры рекомбинации. Эти электроны захватываются ускоряющим полем закрытого коллекторного перехода с потенциалом:
, и втягиваются в область коллектора. Ток электронов, попавших из эмиттера в коллектор, замыкается через внешнюю цепь и источник ЕК. Лишь небольшая часть электронов рекомбинирует в базе с дырками. Эта часть уменьшает ток коллектора на величину a, т.е.: Iк = a Iэ, (12.3)
где a = 0,9 ¸ 0,99 - коэффициент передачи тока эмиттера. Заряд рекомбинировавших электронов остается в базе. Для компенсации этого заряда из источника Еб в базу поступают дырки. Поэтому ток базы представляет собой ток рекомбинации:
. (12.4)
Ток коллектора, определяемый выражением (12.3), зависит от напряжения Uбэ и называется управляемым. Кроме управляемого тока, через закрытый коллекторный переход протекает обратный ток Iкбо, обусловленный дрейфом собственных носителей заряда. С учетом этого:
, а . Выразим ток эмиттера из последнего выражения:
Подставляя это значение в выражение для тока коллектора, получаем:
, (12.5)
где b - коэффициент передачи тока базы >> 1; Iкэо – обратный ток транзистора. Так как Iкэо обычно пренебрежимо мал, справедливо приближенное равенство:
. (12.6)
Оно показывает, что если ток базы изменить на величину Iб, то ток коллектора изменится на величину b D Iб, т.е. в b раз большую. В этом и заключается суть усиления. К основным параметрам биполярных транзисторов относятся средние и максимально допустимые значения токов коллектора и базы, максимальные значения напряжений Uкэ; Uбэ; Uкб; коэффициент передачи тока базы b, максимально допустимые частота и мощность и т.п. Каждый транзистор по схеме с ОЭ описывается семействами выходных и входных характеристик (рис. 12.6 б и 12.6 в соответственно). Выходной вольтамперной характеристикой транзистора называется зависимость тока коллектора от напряжения Uкэ т.е. Iк = j (Uкэ), снятая при постоянном токе базы Iб = const. На выходной характеристике можно выделить три характерных участка. Первый участок лежит в области малых значений . При таком напряжении коллекторный переход оказывается открытым. Транзистор работает в режиме насыщения. Ток коллектора резко изменяется с изменением напряжения . Напряжение отсекающее крутой участок лежит в пределах . Первый участок используется в импульсной технике при реализации ключевого режима транзистора. Большую часть характеристики занимает II, пологий участок. На этом участке ток коллектора почти не зависит от напряжения . Его значение практически полностью определяется током базы (12 в.). Транзистор работает в активном режиме, обеспечивая усиление сигнала. Небольшой наклон пологого участка обусловлен тем, что с ростом увеличивается потенциальный барьер закрытого коллекторного р-n перехода, расширяется его запирающий слой за счет толщины базы. В более тонкой базе меньше вероятность рекомбинации, поэтому значение b, а значит и увеличивается. Резкое увеличение тока на III участке характеристики вызывается явлением электрического пробоя. Входной вольтамперной характеристикой транзистора называется зависимость тока базы от напряжения , при постоянном напряжении . При оба перехода в транзисторе работают под прямым напряжением. Токи коллектора и эмиттера складываются в базе. Входная характеристика транзистора, в этом случае, представляет собой ВАХ двух p-n переходов, включенных параллельно. При коллекторный переход закрывается. Транзистор переходит в активный режим работы. Ток базы в этом режиме определяется выражением (12.4). Поэтому входная характеристика транзистора строится как прямая ветвь ВАХ одного (эмиттерного) перехода. В заключение необходимо отметить, что токи транзистора сильно зависят от температуры окружающей среды. Это общий недостаток полупроводниковых приборов. Причина этого недостатка в том, что с ростом температуры увеличивается концентрация собственных носителей заряда (пары электрон-дырка). Поэтому ток удваивается с увеличением температуры на каждые 8 ¸ 100С. Кроме того, с увеличением температуры центры рекомбинации (дефекты кристаллической решетки) постепенно заполняются, и вероятность рекомбинации носителей в базе падает, а, значит, коэффициент передачи тока базы b увеличивается. Таким образом, при нагреве на 20 ¸ 300 С ток может измениться на десятки процентов.
Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.005 сек.) |