АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Общие задачи оптимизации

Читайте также:
  1. I Психологические принципы, задачи и функции социальной работы
  2. I. 1.1. Пример разработки модели задачи технического контроля
  3. I. 1.2. Общая постановка задачи линейного программирования
  4. I. 2.1. Графический метод решения задачи ЛП
  5. I. ГИМНАСТИКА, ЕЕ ЗАДАЧИ И МЕТОДИЧЕСКИЕ ОСОБЕННОСТИ
  6. I. ЗАДАЧИ ПЕДАГОГИЧЕСКОЙ ПРАКТИКИ
  7. I. Значение и задачи учета. Основные документы от реализации продукции, работ, услуг.
  8. I. ОБЩИЕ ПОЛОЖЕНИЯ
  9. I. ОБЩИЕ ПОЛОЖЕНИЯ
  10. I. ОБЩИЕ ПОЛОЖЕНИЯ
  11. I. ОБЩИЕ ПОЛОЖЕНИЯ ПО ВЫПОЛНЕНИЮ КОНТРОЛЬНОЙ РАБОТЫ
  12. I. Общие сведения

Классификация методов оптимизации

Общая запись задач оптимизации задаёт большое разнообразие их классов. От класса задачи зависит подбор метода (эффективность её решения). Классификацию задач определяют: целевая функция и допустимая область (задаётся системой неравенств и равенств или более сложным алгоритмом)[1].

Методы оптимизации классифицируют в соответствии с задачами оптимизации:

§ Локальные методы: сходятся к какому-нибудь локальному экстремуму целевой функции. В случае унимодальной целевой функции, этот экстремум единственен, и будет глобальным максимумом/минимумом.

§ Глобальные методы: имеют дело с многоэкстремальными целевыми функциями. При глобальном поиске основной задачей является выявление тенденций глобального поведения целевой функции.

Существующие в настоящее время методы поиска можно разбить на три большие группы:

1. детерминированные;

2. случайные (стохастические);

3. комбинированные.

По критерию размерности допустимого множества, методы оптимизации делят на методы одномерной оптимизации и методымногомерной оптимизации.

По виду целевой функции и допустимого множества, задачи оптимизации и методы их решения можно разделить на следующие классы:

§ Задачи оптимизации, в которых целевая функция и ограничения являются линейными функциями, разрешаются так называемыми методами линейного программирования.

§ В противном случае имеют дело с задачей нелинейного программирования и применяют соответствующие методы. В свою очередь из них выделяют две частные задачи:

§ если и — выпуклые функции, то такую задачу называют задачей выпуклого программирования;

§ если , то имеют дело с задачей целочисленного (дискретного) программирования.

По требованиям к гладкости и наличию у целевой функции частных производных, их также можно разделить на:

§ прямые методы, требующие только вычислений целевой функции в точках приближений;

§ методы первого порядка: требуют вычисления первых частных производных функции;

§ методы второго порядка: требуют вычисления вторых частных производных, то есть гессиана целевой функции.

Помимо того, оптимизационные методы делятся на следующие группы:

§ аналитические методы (например, метод множителей Лагранжа и условия Каруша-Куна-Таккера);

§ численные методы;

§ графические методы.

В зависимости от природы множества X задачи математического программирования классифицируются как:

§ задачи дискретного программирования (или комбинаторной оптимизации) — если X конечно или счётно;

§ задачи целочисленного программирования — если X является подмножеством множества целых чисел;

§ задачей нелинейного программирования, если ограничения или целевая функция содержат нелинейные функции и X являетсяподмножеством конечномерного векторного пространства.

§ Если же все ограничения и целевая функция содержат лишь линейные функции, то это — задача линейного программирования.

Кроме того, разделами математического программирования являются параметрическое программирование, динамическое программирование и стохастическое программирование. Математическое программирование используется при решении оптимизационных задач исследования операций.

Способ нахождения экстремума полностью определяется классом задачи. Но перед тем, как получить математическую модель, нужно выполнить 4 этапа моделирования:

§ Определение границ системы оптимизации

§ Отбрасываем те связи объекта оптимизации с внешним миром, которые не могут сильно повлиять на результат оптимизации, а, точнее, те, без которых решение упрощается

§ Выбор управляемых переменных

§ «Замораживаем» значения некоторых переменных (неуправляемые переменные). Другие оставляем принимать любые значения из области допустимых решений (управляемые переменные)

§ Определение ограничений на управляемые переменные

§ … (равенства и/или неравенства)

§ Выбор числового критерия оптимизации (например, показателя эффективности)

§ Создаём целевую функцию


Линейное программирование

·

·

ЛИНЕЙНОЕ ПРОГРАММИРОВАНИЕ [linear programming] — область математического программирования, посвященная теории и методам решения экстремальных задач, характеризующихся линейной зависимостьюмежду переменными.

В самом общем виде задачу Л. п. можно записать так. Даны ограничения типа

или в т. н. канонической форме, к которой можно привести все три указанных случая:

Требуется найти неотрицательные числа xj (j = 1, 2,..., n), которые минимизируют (или максимизируют) линейную форму

Неотрицательность искомых чисел записывается так: xj ≥ 0.

Таким образом, здесь представлена общая задача математического программирования с оговорками: как ограничения, так и целевая функция линейные, а искомые переменные неотрицательные. Обозначения можно трактовать следующим образом: bi — количество ресурса вида i; m — количество видов этих ресурсов; aij — норма расхода ресурса вида i на единицу продукции вида j; xj — количество продукциивида j, причем количество таких видов — n; cj — доход (или другой выигрыш) от единицы этой продукции, а в случае задачи на минимум — затраты на единицу продукции; нумерация ресурсов разделена на три части: от 1 до m1, от m1 + 1 до m2 и от m2 + 1 до m в зависимости от того, какие ставятся ограничения на расходование этих ресурсов; в первом случае — “не больше”, во втором — “столько же”, в третьем — “не меньше”; Z — в случае максимизации, напр., объем продукции или дохода, в случае же минимизации — себестоимость, расход сырья и т. п. Добавим еще одно обозначение, оно появится несколько ниже: vi — оптимальная оценка i-го ресурса.

Слово “программирование” объясняется здесь тем, что неизвестные переменные, которые отыскиваются в процессе решения задачи, обычно в совокупности определяют программу (план) работы некоторого экономического объекта. Слово “линейное” отражает факт линейной зависимости между переменными. При этом, как указано, задача обязательно имеет экстремальный характер, т. е. состоит в отысканииэкстремума (максимума или минимума) целевой функции.

Следует с самого начала предупредить: предпосылка линейности, когда в реальной экономике подавляющее большинство зависимостей носит более сложный нелинейный характер, есть огрубление, упрощение действительности. В некоторых случаях оно достаточно реалистично, в других же выводы, получаемые с помощью решения задач Л. п., оказываются весьма несовершенными.

 


1 | 2 | 3 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.004 сек.)