|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Частные производные функции трёх переменных
Продолжаем всеми любимую тему математического анализа – производные. В данной статье мы научимся находить частные производные функции трёх переменных: первые производные и вторые производные. Что необходимо знать и уметь для освоения материала? Не поверите, но, во-первых, нужно уметь находить «обычные» производные функции одной переменной – на высоком или хотя бы среднем уровне. Если с ними совсем туго, то начните с урока Как найти производную? Во-вторых, очень важно прочитать статью Частные производные функции двух переменных и осмыслить-прорешать если не все, то бОльшую часть примеров. Если это уже сделано, то уверенной походкой идём со мной, будет интересно, даже удовольствие получите! Методы и принципы нахождения частных производных функции трёх переменных на самом деле очень похожи на частные производные функции двух переменных. Функция двух переменных, напоминаю, имеет вид , где «икс» и «игрек» – независимые переменные. Геометрически функция двух переменных представляет собой некоторую поверхность в нашем трёхмерном пространстве. Функция трёх переменных имеет вид , при этом переменные называются независимыми переменными или аргументами, переменная называется зависимой переменной или функцией. Например: – функция трёх переменных А теперь немного о фантастических фильмах и инопланетянах. Часто можно услышать о четырехмерном, пятимерном, десятимерном и т.д. пространствах. Чушь или нет? – Существует ли в мире четвертое, пятое и т.д. измерения в смысле обывательского понимания пространства (длина/ширина/высота)? – Можно ли построить четырехмерное, пятимерное и т.д. пространство в широком понимании этого слова? То есть, привести пример такого пространства в нашей жизни. – Возможно ли путешествие в прошлое? – Возможно ли путешествие в будущее? – Существуют ли инопланетяне? На любой вопрос можно выбрать один из четырёх ответов: Кто правильно ответит на все вопросы, тот, скорее всего, обладает некоторой вещью;-) Ответы на вопросы я постепенно буду выдавать по ходу урока, не пропускайте примеры! Собственно, полетели. И сразу хорошая новость: для функции трёх переменных справедливы правила дифференцирования и таблица производных. Именно поэтому вам необходимо хорошо управляться с «обычными» производными функций одной переменной. Отличий совсем немного! Пример 1 Найти частные производные первого порядка функции трёх переменных Решение: Нетрудно догадаться –для функции трёх переменных существуют три частных производных первого порядка, которые обозначаются следующим образом: или – частная производная по «икс»; В ходу больше обозначение со штрихом, но составители сборников, методичек в условиях задач очень любят использовать как раз громоздкие обозначения – так что не теряйтесь! Возможно, не все знают, как правильно читать вслух эти «страшные дроби». Пример: следует читать следующим образом: «дэ у по дэ икс». Начнём с производной по «икс»: . Когда мы находим частную производную по , то переменныеи считаются константами (постоянными числами). А производная любой константы, о, благодать, равна нулю: Сразу обратите внимание на подстрочный индекс – никто вам не запрещает помечать, что являются константами. Так даже удобнее, начинающим рекомендую использовать именно такую запись, меньше риск запутаться. (1) Используем свойства линейности производной, в частности, выносим все константы за знак производной. Обратите внимание, что во втором слагаемом константу выносить не нужно: так как «игрек» является константой, то – тоже константа. В слагаемом за знак производной вынесена «обычная» константа 8 и константа «зет». (2) Находим простейшие производные, не забывая при этом, что – константы. Далее причесываем ответ. Частная производная . Когда мы находим частную производную по «игрек», то переменныеи считаются константами: (1) Используем свойства линейности. И снова заметьте, что слагаемые , являются константами, а значит, за знак производной выносить ничего не нужно. (2) Находим производные, не забывая, что константы. Далее упрощаем ответ. И, наконец, частная производная . Когда мы находим частную производную по «зет», то переменныеи считаются константами: Общее правило очевидно и незатейливо: Когда мы находим частную производную по какой-либо независимой переменной, то две другие независимые переменные считаются константами. При оформлении данных задач следует быть предельно внимательным, в частности, нельзя терять подстрочные индексы (которые указывают, по какой переменной проводится дифференцирование). Потеря индекса будет ГРУБЫМ НЕДОЧЁТОМ. Хммм…. забавно, если после такого устрашения я их сам где-нибудь их пропущу) Пример 2 Найти частные производные первого порядка функции трёх переменных Это пример для самостоятельного решения. Полное решение и ответ в конце урока. Рассмотренные два примера достаточно просты и, решив несколько подобных задачек, даже чайник приноровится расправляться с ними устно. Для разгрузки вернемся к первому вопросу викторины: Существует ли в мире четвертое, пятое и т.д. измерения в смысле обывательского понимания пространства (длина/ширина/высота)? Верный ответ: Наукой это не запрещено. Вся фундаментальная математическая аксиоматика, теоремы, математический аппарат прекрасно и непротиворечиво работают в пространстве любой размерности. Не исключено, что где-нибудь во Вселенной существуют неподвластные нашему разуму гиперповерхности, например, четырёхмерная гиперповерхность, которая задается функцией трех переменных . А может быть гиперповерхности рядом с нами или даже мы находимся прямо в них, просто наше зрение, другие органы чувств, сознание способны на восприятие и осмысление только трёх измерений. Вернемся к примерам. Да, если кто сильно загрузился викториной, ответы на следующие вопросы лучше прочитать после того, как научитесь находить частные производные функции трёх переменных, а то я вам по ходу статьи вынесу весь мозг =) Помимо простейших Примеров 1,2 на практике встречаются задания, которые можно назвать небольшой головоломкой. Такие примеры, к моей досаде, выпали из поля зрения, когда я создавал урок Частные производные функции двух переменных. Навёрстываем упущенное: Пример 3 Найти частные производные первого порядка функции трёх переменных и составить полный дифференциал первого порядка Решение: вроде бы тут «всё просто», но первое впечатление обманчиво. При нахождении частных производных многие будут гадать на кофейной гуще и ошибаться. Разберём пример последовательно, чётко и понятно. Начнём с частной производной по «икс». Когда мы находим частную производную по «икс», то переменные считаются константами. Следовательно, показатель нашей функции – тоже константа. Для чайников рекомендую следующий приём решения: на черновике поменяйте константу на конкретное положительное целое число, например, на «пятерку». В результате получится функция одной переменной: Это степенная функция со сложным основанием (синусом). По правилу дифференцирования сложной функции: Теперь вспоминаем, что , таким образом: На чистовике, конечно, решение следует оформить так: Находим частную производную по «игрек», считаются константами. Если «икс» константа, то – тоже константа. На черновике проделываем тот же трюк: заменим, например, на 3, «зет» – заменим той же «пятёркой». В результате снова получается функция одной переменной: Это показательная функция со сложным показателем. По правилу дифференцирования сложной функции: Теперь вспоминаем нашу замену: Таким образом: На чистовике, понятно, оформление должно выглядеть, благообразно: И зеркальный случай с частной производной по «зет» ( – константы): При определенном опыте проведенный анализ можно проводить мысленно. Выполняем вторую часть задания – составим дифференциал первого порядка. Это очень просто, по аналогии с функцией двух переменных, дифференциал первого порядка записывается по формуле: В данном случае: И делов то. Отмечу, что в практических задачах полный дифференциал 1-го порядка функции трёх переменных требуют составить значительно реже, чем для функции двух переменных. Забавный пример для самостоятельного решения: Пример 4 Найти частные производные первого порядка функции трёх переменных и составить полный дифференциал первого порядка Полное решение и ответ в конце урока. Если возникнут затруднения, используйте рассмотренный «чайниковский» алгоритм, он гарантированно должен помочь. И ещё полезный совет – не спешите. Такие примеры быстро не решаю даже я. Отвлекаемся и разбираем второй вопрос: Можно ли построить четырехмерное, пятимерное и т.д. пространство в широком понимании этого слова? То есть, привести пример такого пространства в нашей жизни. Верный ответ: Да. Причём, очень легко. Например, добавляем к длине/ширине/высоте четвёртое измерение – время. Популярное четырехмерное пространство-время и всем известная теория относительности, аккуратно украденная Эйнштейном у Лобачевского, Пуанкаре, Лоренца и Минковского. Тоже не все знают. За что у Эйнштейна Нобелевская премия? В научном мире был страшный скандал, и Нобелевский комитет сформулировал заслугу плагиатора примерно следующим образом: «За общий вклад в развитие физики». Так то оно. Бренд троечника Эйнштейна – чистая раскрутка и пиар. К рассмотренному четырехмерному пространству легко добавить пятое измерение, например: атмосферное давление. И так далее, так далее, так далее, сколько зададите измерений в своей модели – столько и будет. В широком смысле слова мы живём в многомерном пространстве. Разберём еще пару типовых задач: Пример 5 Найти частные производные первого порядка в точке Решение: Задание в такой формулировке часто встречается на практике и предполагает выполнение следующих двух действий: Решаем: (1) Перед нами сложная функция, и на первом шаге следует взять производную от арктангенса. При этом мы, по сути, невозмутимо используем табличную формулу производной арктангенса . По правилу дифференцирования сложной функции результат необходимо домножить на производную внутренней функции (вложения): . (2) Используем свойства линейности. (3) И берём оставшиеся производные, не забывая, что – константы. По условию задания необходимо найти значение найденной частной производной в точке . Подставим координаты точки в найденную производную: Преимуществом данного задания является тот факт, что другие частные производные находятся по очень похожей схеме: Как видите, шаблон решения практически такой же. Вычислим значение найденной частной производной в точке : И, наконец, производная по «зет»: Готово. Решение можно было оформить и по другому: сначала найти все три частные производные, а потом вычислить их значения в точке . Но, мне кажется, приведенный способ удобнее – только нашли частную производную, и сразу, не отходя от кассы, вычислили её значение в точке. Интересно отметить, что геометрически точка – вполне реальная точка нашего трехмерного пространства. Значения же функции , производных – уже четвертое измерение, и где оно геометрически находится, никто не знает. Как говорится, по Вселенной никто с рулеткой не ползал, не проверял. Коль скоро снова философская тема пошла, рассмотрим третий вопрос: Возможно ли путешествие в прошлое? Верный ответ: Нет. Путешествие в прошлое противоречит второму закону термодинамики о необратимости физических процессов (энтропии). Так что не ныряйте, пожалуйста, в бассейн без воды, событие можно открутить назад только в видеозаписи =) Народная мудрость не зря придумала противоположный житейский закон: «Семь раз отмерь, один раз отрежь». Хотя, на самом деле грустная штука, время однонаправлено и необратимо, никто из нас завтра не помолодеет. А различные фантастические фильмы вроде «Терминатора» с научной точки зрения – полная чушь. Абсурд и с точки зрения философии – когда Следствие, вернувшись в прошлое, может уничтожить собственную же Причину. Пример 6 Найти частные производные первого порядка в точке Пример 7 Найти частные производные первого порядка в точке Это два несложных примера для самостоятельного решения. Полное решение и ответ в конце урока. Но вы не расстраивайтесь из-за второго закона термодинамики, сейчас я всех приободрю более сложными примерами: Пример 8 Найти частные производные первого порядка функции трёх переменных Решение: Найдем частные производные первого порядка: (1) Начиная находить производную, следует придерживаться того же подхода, что и для функции одной переменной. Используем свойства линейности, в данном случае выносим за знак производной константы . (2) Под знаком производной у нас находится произведение двух функций, каждая из которых зависит от нашей «живой» переменной «икс». Поэтому необходимо использовать правило дифференцирования произведения . (3) С производной сложностей никаких, а вот производная является производной сложной функции: сначала необходимо найти, по сути, табличный логарифм и домножить его на производную от вложения. (4) Думаю, все уже освоились с простейшими примерами вроде – тут у нас «живой» только , производная которого равна Практически зеркален случай с производной по «игрек», его я запишу короче и без комментариев: Интереснее с производной по «зет», хотя, всё равно почти то же самое: (1) Выносим константы за знак производной. (2) Здесь опять произведение двух функций, каждая из которых зависит от «живой» переменной «зет». В принципе, можно использовать формулу производной частного, но проще таки пойти другим путём – найти производную от произведения. (3) Производная – это табличная производная. Во втором слагаемом – уже знакомая производная сложной функции. Готово. Пример 9 Найти частные производные первого порядка функции трёх переменных Это пример для самостоятельного решения. Подумайте, как рациональнее находить ту или иную частную производную. Полное решение и ответ в конце урока. Перед тем как перейти к заключительным примерам урока и рассмотреть частные производные второго порядка функции трёх переменных, всех еще раз взбодрю четвертым вопросом: Возможно ли путешествие в будущее? Верный ответ: Наукой это не запрещено. Парадоксально, но не существует математического, физического, химического или другого естественнонаучного закона, который бы запрещал путешествие в будущее! Кажется чушью? Но практически у каждого в жизни бывало предчувствие (причём, не подкрепленное никакими логическими доводами), что произойдет то или иное событие. И оно происходило! Откуда пришла информация? Из будущего? Таким образом, фантастические фильмы о путешествии в будущее, да и, к слову, предсказания всевозможных гадалок, экстрасенсов нельзя назвать таким уж бредом. По крайне мере, наука этого не опровергла. Всё возможно! Так, когда я учился в школе, то компакт диски и плоские мониторы из фильмов казались мне невероятной фантастикой. Известная комедия «Иван Васильевич меняет профессию» – выдумка наполовину (как максимум). Никакой научный закон не запрещал Ивану Грозному оказаться в будущем, но невозможно, чтобы два перца оказались в прошлом и исполняли обязанности царя.
Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.014 сек.) |