|
|||||||
|
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Дифференциал функции одной переменнойС формально-технической точки зрения найти дифференциал функции – это «почти то же самое, что найти производную». Производная функции чаще всего обозначается через Дифференциал функции стандартно обозначается через Дифференциал функции одной переменной записывается в следующем виде:
Другой вариант записи: Простейшая задача: Найти дифференциал функции 1) Первый этап. Найдем производную:
2) Второй этап. Запишем дифференциал:
Готово. Дифференциал функции одной или нескольких переменных чаще всего используют для приближенных вычислений. Помимо «комбинированных» задач с дифференциалом время от времени встречается и «чистое» задание на нахождение дифференциала функции: Пример 7 Найти дифференциал функции Перед тем, как находить производную или дифференциал, всегда целесообразно посмотреть, а нельзя ли как-нибудь упростить функцию (или запись функции) ещё до дифференцирования? Смотрим на наш пример. Во-первых, можно преобразовать корень:
Во-вторых, замечаем, что под синусом у нас дробь, которую, очевидно, предстоит дифференцировать. Формула дифференцирования дроби очень громоздка. Нельзя ли избавиться от дроби? В данном случае – можно, почленно разделим числитель на знаменатель:
Функция сложная. В ней два вложения: под степень вложен синус, а под синус вложено выражение
Запишем дифференциал, при этом снова представим
Готово. Когда производная представляет собой дробь, значок Пример 8 Найти дифференциал функции Это пример для самостоятельного решения. Следующие два примера на нахождение дифференциала в точке: Пример 9 Вычислить дифференциал функции Найдем производную: Опять, производная вроде бы найдена. Но в эту бодягу еще предстоит подставлять число, поэтому результат максимально упрощаем:
Труды были не напрасны, записываем дифференциал: Теперь вычислим дифференциал в точке В значок дифференциала Ну и хорошим тоном в математике считается устранение иррациональности в знаменателе. Для этого домножим числитель и знаменатель на
Пример 10 Вычислить дифференциал функции Это пример для самостоятельного решения. Примерный образец оформления и ответ в конце урока.
Поиск по сайту: |
||||||
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (1.163 сек.) |