АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

F. Метод, основанный на использовании свойства монотонности показательной функции

Читайте также:
  1. I Психологические принципы, задачи и функции социальной работы
  2. I. Деньги и их функции.
  3. I. Функции
  4. I. Функции эндоплазматической сети.
  5. II. Основные задачи и функции
  6. II. Основные задачи и функции
  7. II. Свойства векторного произведения
  8. II. Функции плазмолеммы
  9. III. Предмет, метод и функции философии.
  10. III. Психические свойства личности – типичные для данного человека особенности его психики, особенности реализации его психических процессов.
  11. III. Функции и полномочия Гостехкомиссии России

Примеры.

Пример 1. Решите уравнение: .

Решение.

Заметим, что при х=1 уравнение обращается в тождество. Следовательно, х=1 - корень уравнения. Перепишем уравнение в виде

(*)

Так как при основании, меньшем единицы, показательная функция убывает на R, то при х левая часть уравнения (*) больше единицы, то есть

Если то левая часть уравнения меньше единицы, то есть

Поэтому, других корней, кроме х=1, уравнение не имеет.

Ответ: 1.

Пример 2. Решите уравнение: .

Решение.

Это уравнение также обращается в тождество при х=1.

Перепишем уравнение в виде:

.

При основании, меньшем единицы, показательная функция убывает на R.

Поэтому при х а при х : . Таким образом, других корней, кроме х=1, уравнение не имеет.

Ответ: 1.

G. Графический способ решения уравнений вида f(x).

Чтобы графически решить уравнение такого вида, необходимо построить графики функций y= f(x) в одной системе координат и найти (точно или приближенно) абсциссы точек (если они есть) пересечения этих графиков. Абсциссы этих точек - корни данного уравнения (точность результатов определяем только после подстановки в уравнение).

Примеры.

Пример 1. Решите уравнение: .

Решение.

1.Рассмотрим две функции: f(x) = и g(x) = x+1.

2.Графиком функции f(x) = является кривая, расположенная в верхней полуплоскости, графиком функции g(x) = x+1 является прямая.

3. Зададим таблицы значений этих функций:

х -1        
f(x) =      
х    
g(x)= x+1    

4. Из рисунка видно, что прямая и кривая пересекаются в двух точках- в точке А и в точке В. По графику определяем абсциссы этих точек: . Значит, уравнение имеет два корня: х=3 и х= . Число х=3 - точный корень заданного уравнения, так как при подстановке в это уравнение получается верное числовое равенство:

Ответ: 3; .

Пример 2 . Решите уравнение: .

Решение.

1. Рассмотрим две функции f(x) = и g(x) = .Используем свойства степени и преобразуем выражение :

= , тогда вторую формулу можно переписать в виде: f(x) = .

2. Функция f(x) = - показательная по основанию и ее графиком является кривая, расположенная в верхней полуплоскости.

Функция g(x) = - прямая пропорциональность и ее график - прямая, проходящая через точку .

3. Зададим таблицы значений этих функций и затем построим их графики в одной системе координат.

х -3 -2 -1      
f(x) =        
х    
g(x) =  

4. Графики пересекаются в одной точке - в точке А, ее абсцисса равна единице.Значит, х=1 - корень заданного уравнения.

Примечание:

Если одна часть уравнения содержит убывающую функцию f(x), а другая часть -возрастающую функцию g(x), и уравнение имеет корень х= , то он -единственный.

В примере 2.: f(x) = убывающая на R функция, а g(x = - возрастающая на R функция, х=1- корень уравнения и он единственный.

Ответ: 1.

 

 


1 | 2 | 3 | 4 | 5 | 6 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.005 сек.)