АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Показательные уравнения и неравенства

Читайте также:
  1. I I. Тригонометрические уравнения.
  2. II Неравенства.
  3. V2: ДЕ 54 - Дифференциальные уравнения, допускающие понижение порядка
  4. V2: ДЕ 57 - Фундаментальная система решений линейного однородного дифференциального уравнения
  5. V2: Применения уравнения Шредингера
  6. V2: Уравнения Максвелла
  7. VI Дифференциальные уравнения
  8. Алгебраические уравнения
  9. Алгебраические уравнения
  10. Алгоритм составления уравнения химической реакции
  11. АНАЛИЗ УРАВНЕНИЯ (13)
  12. Аналитическое решение данного дифференциального уравнения

Примеры решения показательных уравнений

Пример №1

1000x=100

Представим левую и правую часть уравнения в виде степени, имеющую одинаковые основания:

103x=102

Теперь, когда основания одинаковые, нужно приравнять показатели степеней.

3x=2
x=2/3

Ответ: x=2/3.

 


Главное в показательных уравнениях - свести левую и правую часть уравнения к общему основанию:

Пример №2

(2/5)x=(5/2)4

Представим (2/5)x как (5/2)-x:

(5/2)-x=(5/2)4

Основания одинаковые, следовательно, приравниваем показатели:

-x=4
x=-4

Ответ: x=-4

Пример №3

√3х=9

√3х распишем как 3x/2, а 9 - как 32:

3х/2=32

Приравниваем показатели:

х/2=2
х=4

Ответ: x=4

Пример №4

3х2-х-2=81

Заметим, что 81=34

3х2-х-2=34

Приравниваем показатели:

х2-х-2=4

х2-х-6=0

Получили квадратное уравнение:

D=1+24=25, D>0, следовательно, уравнение имеет два действительных корня

х1=(1+5)/2=3

х2=(1-5)/2=-2

Ответ: х=3 и х=-2

Пример №5

4х+1+4х=320

В таких случаях выносится основание с наименьшим показателем. В данном уравнении наименьшим показателем является х. Вынесем 4х за скобки:

4х(4+1)=320

4х*5=320

Представим 320 в виде 5*43, тогда:

4х*5=5*43

Поделим левую и правую часть уравнения на 5:

4х=43

Приравняем показатели:

х=3

Ответ: х=3

Пример №6

7х+2+4*7х-1=347

Степенью с наименьшим показателем в этом уравнении является х-1, следовательно, за скобки выносим 7x-1. Получаем:

7х-1*(73+4)=347

7х-1*347=347

Поделим левую и правую часть уравнения на 347:

7х-1=1

Заметим, что любое число в нулевой степени равно 1. Следовательно, распишем 1 как 70:

7х-1=70

Приравняв показатели, получим:

х-1=0

х=1

Ответ: х=1

Пример №7

4х-5*2х+4=0

Представим 4х как 2, получим:

2-5*2х+4=0

Введем подстановку: 2х обозначим переменной t. Cледовательно: 2=t2. Получим:

t2-5t+4=0

Найдем корни уравнения по теореме Виета:

t1=1

t2=4

Заменим t на 2х:

2х=1

Заметим, что 20=1

2х=20

Приравняем показатели:

х=0

2х=4

Заметим, что 4=22

2х=22

Приравняем показатели:

х=2

Уравнение имеет два действительных корня 0 и 2.

Ответ: х=0 и х=2

Пример №8

(√2+√3)х + (√2-√3)х=4

Введем подстановку: (√2+√3)х обозначим переменной t. А (√2-√3)х домножим на сопряженные и получим:

((√2+√3)х*(√2-√3)х) / (√2+√3)х = (√4-3)х/(√2+√3)х = 1 x/(2+√3)x = 1/(2+√3)x

Следовательно, 1/(√2+√3)х=1/t.

Получаем:

t+1/t=4

Отметим, что t=0, т.к. деление на 0 не определено. Домножим левую и правую часть на t:

t2+1=4t

t2-4t+1=0

Решим квадратное уравнение:

D=16-4=12, D>0, следовательно, уравнение имеет два действительных корня

t1=(4-2√3)/2=2-√3

t2=(4+2√3)/2=2+√3

Заменим t на (√2+√3)х:

(√2-√3)х=2+√3

Домножим 2+√3 на сопряженные и получим:

1/(2-√3)=2+√3

Cледовательно:

(√2-√3)х=1/2-√3

Заметим, что 1/2-√3=(√2-√3)-2

(√2+√3)х=(√2-√3)-2

Приравняв показатели, получим:

х=-2

Заменим t на 2+√3

(√2+√3)х=2+√3

Заметим, что 2+√3=(√2+√3)2

Приравняв показатели, получим:

х=2

Ответ: х=-2 и х=2

Пример №9

x+y=6

xy2+7y+12=1

Выразим x:

x=6-y

xy2+7y+12=1

Заметим, что x0=1:

x=6-y

xy2+7y+12=x0

Приравним показатели:

x=6-y

y2+7y+12=0

Решим отдельно квадратное уравнение:

y2+7y+12=0

D=49-48=1, D>0, следовательно, уравнение имеет два действительных корня

y1=(-7+1)=-3

y2=(-7-1)=-4

y=-3

x=6-(-3)=9

y=-4

x=6-(-4)=10

Ответ: x=9; y=-3 и x=10; y=-4

Показательные уравнения и неравенства

Решение большинства математических задач так или иначе связано с преобразованием числовых, алгебраических или функциональных выражений. Сказанное в особенности относится к решению показательных уравнений и неравенств. В вариантах ЕГЭ по математике к такому типу задач относится, в частности, задача C3. Научиться решать задания C3 важно не только с целью успешной сдачи ЕГЭ, но и по той причине, что это умение пригодится при изучении курса математики в высшей школе.

Выполняя задания C3, приходится решать различные виды уравнений и неравенств. Среди них — рациональные, иррациональные, показательные, логарифмические, тригонометрические, содержащие модули (абсолютные величины), а также комбинированные. В этой статье рассмотрены основные типы показательных уравнений и неравенств, а также различные методы их решений. О решении остальных видов уравнений и неравенств читайте в рубрике «Методическая копилка репетитора по физике и математике» в статьях, посвященных методам решения задач C3 из вариантов ЕГЭ по математике.

Прежде чем приступить к разбору конкретных показательных уравнений и неравенств, как репетитор по математике, предлагаю вам освежить в памяти некоторый теоретический материал, который нам понадобится.


1 | 2 | 3 | 4 | 5 | 6 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.007 сек.)