|
||||||||||||||||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Алгебраические уравнения. Теорема Гаусса. Любое алгебраическое уравнение (*)Теорема Гаусса. Любое алгебраическое уравнение
имеет на множестве комплексных чисел хотя бы одно решение. Эту теорему также называют основной теоремой алгебры. Согласно этой теореме, уравнение (*) имеет хотя бы один корень z = z0. Разделив многочлен, стоящий в левой части (*) на одночлен (z = z0), мы получим снова уравнение вида (*), которое согласно той же теореме Гаусса имеет хотя бы одно решение. Продолжая так n раз, получим следствие теоремы Гаусса: любое алгебраическое уравнение n-ной степени имеет ровно n, вообще говоря, комплексных, корней (разумеется, некоторые корни могут совпадать). Пример 1 Решите уравнение z3 + z – 2 = 0. Решение
Рациональные уравнения являются следующим по сложности типом стандартных уравнений. Функция f (x) называется рациональной (дробно-рациональной), если она представима в виде отношения двух многочленов: (степени n и m многочленов могут быть произвольными). Уравнение f (x) = g (x) называется дробно-рациональным, если f (x) и g (x) являются дробно-рациональными функциями. Для решения дробно-рациональных уравнений существует алгоритм. 1. Найти общий знаменатель дробей, входящих в уравнение. 2. Заменить данное уравнение уравнением с целыми коэффициентами, умножив его на общий знаменатель. 3. Попытаться решить полученное уравнение с целыми коэффициентами. 4. Исключить из его корней те, которые обращают в нуль общий знаменатель. 5. Записать ответ. Пример 2 Решите уравнение Решение
равнения, в которых переменная входит под знаком радикала, называются иррациональными уравнениями. Стандартным методом их решения является возведение уравнения в подходящую степень. Однако, возведение уравнения в произвольную степень не всегда приводит к равносильному уравнению. Действительно, уравнение
является лишь следствием уравнения f (x) = g (x), то есть содержит все корни этого уравнения, но может иметь и другие корни. Уравнение (6) среди своих корней содержит ещё и корни уравнения f (x) = –g (x) (если таковые существуют), следствием которого оно также является. Итак, у уравнения (6) «больше» корней, чем у уравнения f (x) = g (x), а это как раз и обозначает, что при возведении в чётную степень могут появиться посторонние корни. В этом случае проверка необходима, как составляющий элемент решения. Она необходима даже в тех случаях, когда лишние корни не появились, но ход решения был таков, что они могли появиться. В последнем случае иногда проще сделать проверку, чем доказать, что она не нужна. Именно поэтому проверка здесь является элементом решения. К тому же, проверка может быть средством контроля правильности проделанных вычислений. Однако проверить полученные корни подстановкой не всегда легко. Лишние корни, которые могли появиться при возведении уравнения, например, в квадрат, могут быть отсеяны на основе следующего соображения. Рассмотрим уравнение
Ясно, что если x = x0 − решение этого уравнения, то обе части этого равенства при x = x0 должны быть неотрицательны. Следовательно, потребовав дополнительно, чтобы g(x) ≥ 0, уравнение можно возвести в квадрат. Имеем следующее соотношение равносильности:
Система (8) действительно является равносильной уравнению (7). В самом деле, из системы (8) следует, что функция f (x) равна полному квадрату функции g (x), то есть для решения является неотрицательной. Пример 3 Решите уравнение Решение
|