|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Алгебраические свойства векторного произведения
Для любых векторов , , и любого действительного числа :
1. ;
2. ;
3. .
Первое свойство определяет антисимметричность векторного произведения, второе и третье — аддитивность и однородность по первому множителю. Эти свойства аналогичны свойствам произведения чисел: первое свойство "противоположно" закону коммутативности умножения чисел (закон антикоммутативности), второе свойство соответствует закону дистрибутивности умножения чисел по отношению к сложению, третье — закону ассоциативности умножения. Поэтому рассматриваемая операция и называется произведением векторов. Поскольку ее результатом является вектор, то такое произведение векторов называется векторным.
Докажем первое свойство, предполагая, что векторы и не коллинеарны (в противном случае обе части доказываемого равенства равны нулевому вектору). По определению векторы и имеют равные длины и коллинеарны (так как оба вектора перпендикулярны одной плоскости). По определению тройки векторов и — правые, т.е. вектор направлен так, что кратчайший поворот от к происходит в положительном направлении (против часовой стрелки), если смотреть из конца вектора , а вектор направлен так, что кратчайший поворот от к происходит в положительном направлении, если смотреть из конца вектора (рис. 1.43). Это означает, что векторы и противоположно направлены. Следовательно, , что и требовалось доказать. Доказательство остальных свойств приведено ниже (см. пункт 1 замечаний 1.13).
Координаты вектора с находим с помощью определителя матрицы: Рассчитываем определитель, приводим подобные, коэффициенты при I,J,k и будут координатами x, y, z соответственно.
Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.) |