АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Линейные операции над матрицами

Читайте также:
  1. A) линейные
  2. I. Психологические операции в современной войне.
  3. Абстрактные линейные системы
  4. Активные операции коммерческих банков: понятие, значение, характеристика видов
  5. Арифметические выражения и операции
  6. Арифметические операции
  7. Арифметические операции и выражения
  8. Арифметические операции над двоично-десятичными числами
  9. Арифметические операции языка С
  10. Б) линейные.
  11. Банковская система. Банки и их операции.
  12. БАНКОВСКИЕ ОПЕРАЦИИ

1. Сложение матриц.

 

Определение 3.4. Суммой матриц А и В одинаковой размерности m n называется матрица С той же размерности, каждый элемент которой равен сумме элементов матриц А и В, стоящих на тех же местах:

Свойства сложения:

  1. А + В = В + А.
  2. (А + В) + С = А + (В + С).
  3. Если О – нулевая матрица, то А + О = О + А = А

Замечание 1. Справедливость этих свойств следует из определения операции сложения матриц.

Замечание 2. Отметим еще раз, что складывать можно только матрицы одинаковой размерности.

 

Пример.

 

2. Умножение матрицы на число.

 

Определение 3.5. Произведением матрицы на число называется матрица той же размерности, что и исходная, все элементы которой равны элементам исходной матрицы, умноженным на данное число.

Свойства умножения матрицы на число:

  1. (km)A=k(mA).
  2. k(A + B) = kA + kB.
  3. (k + m)A = kA + mA.

 

Замечание 1. Справедливость свойств следует из определений 3.4 и 3.5.

 

Замечание 2. Назовем разностью матриц А и В матрицу С, для которой С + В =А, т.е. С = А + (-1)В.

 

Пример.

. Тогда


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.)