АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Теорема (Кронекера–Капелли)

Читайте также:
  1. S-M-N-теорема, приклади її використання
  2. Внешние эффекты (экстерналии). Теорема Коуза.
  3. Внешние эффекты, их виды и последствия. Теорема Коуза
  4. Вопрос 1 теорема сложения вероятностей
  5. Вопрос 24 Теорема Остроградского-Гаусса для электрического поля в вакууме
  6. Вопрос. Теорема Котельникова (Найквиста)
  7. Второй закон термодинамики. Энтропия. Закон возрастания энтропии. Теорема Нернста. Энтропия идеального газа.
  8. Гранична теорема Пуассона
  9. Дискретизація сигналу – теорема відліків (Котельникова)
  10. Друга теорема економіки добробуту та її значення
  11. Друга теорема розвинення
  12. Заняття 3. Потік вектора напруженості електричного поля. Теорема Гауса

Система линейных уравнений совместна тогда и только тогда, когда ранг основной матрицы системы равен рангу её расширенной матрицы:

Для совместной системы линейных уравнений вопрос о её определённости или неопределённости решается с применением следующих теорем.

Теорема 1 Если ранг основной матрицы совместной системы равен числу неизвестных, то система является определённой

Теорема 2 Если ранг основной матрицы совместной системы меньше числа неизвестных, то система является неопределённой.

Таким образом, из сформулированных теорем вытекает способ исследования систем линейных алгебраических уравнений. Пусть n – количество неизвестных, Тогда:

1) при система несовместна;

2) при система совместна, причём, если , система определённая; если же , система неопределённая.

Определение Базисным решением неопределённой системы линейных уравнений называют такое её решение, в котором все свободные неизвестные равны нулю.

Пример. Исследовать систему линейных уравнений

и в случае неопределённости системы найти её базисное решение.

Вычислим ранги основной и расширенной матриц данной системы уравнений, для чего приведём расширенную (а вместе с тем и основную) матрицу системы к ступенчатому виду:

Вторую строку матрицы сложим с её первой строкой, умноженной на третью строку – с первой строкой, умноженной на а четвёртую строку – с первой, умноженной на получим матрицу

К третьей строке этой матрицы прибавим вторую строку, умноженную на а к четвёртой строке – первую, умноженную на Врезультате получим матрицу

удаляя из которой третью и четвёртую строки получим ступенчатую матрицу

Таким образом, Следовательно, данная система линейных уравнений совместна, а поскольку величина ранга меньше числа неизвестных, система является неопределённой. Полученной в результате элементарных преобразований ступенчатой матрице соответствует система уравнений

Неизвестные и являются главными, а неизвестные и свободными. Придавая свободным неизвестным нулевые значения, получим базисное решение данной системы линейных уравнений:

Думаю с этим все понятно.


 

Билет

1. Вектор. Понятия

Ответ: в геометрическом смысле вектор — это направленный отрезок, обычно определяемый точками своего начала и конца. Так или иначе вектором - называется отрезок, имеющий определенную длину и направление

Основные понятия

1) Модулем вектора |a| в геометрии называется его длина

2) Коллинеарными называются такие вектора, векторное произведение которых равно нулю. Это параллельные вектора. Коллинеарные вектора могут быть сонаправленными или встречными, то есть направленными строго в противоположные стороны.

3) Ортогональными (перпендикулярными) называются такие вектора, скалярное произведение которых равно нулю. Для любого вектора все вектора, лежащие в любой перпендикулярной ему плоскости, будут ортогональны.

4) Нулевым является вектор, имеющий нулевую длину, то есть тот, у которого координаты начала и конца строго совпадают. В связи с этим обычно нельзя говорить о направлении такого вектора, поэтому его считают не имеющим направления.

5) Компланарными называются вектора, которые приведены к одному началу и лежат в одной плоскости. Если хотя бы один из 3 векторов – нулевой, то три вектора тоже компланарны.

6) Углом между двумя векторами, отложенными от одной точки, называется кратчайший угол, на который нужно повернуть один из векторов вокруг своего начала до положения сонаправленности с другим вектором.

7) Косинус угла между векторами равен скалярному произведению векторов, поделенному на произведение модулей векторов.

2. Сумма векторов и произведение вектора на число.

Ответ: начнем с простого, чтобы сложить два вектора, достаточно сложить каждую из его координат. Т.е. если есть два вектора с координатами: a (x y z) u b (x1 y1 z1) то их суммой будет:

(x+x1;y+y1;z+z1). С этим ясно, умножение вектора на число тоже довольно просто. Если есть вектор a(x y z) и число b=4, то просто домножаем КАЖДУЮ координату на это число.

3. Условие коллинеарности векторов:

Ответ:

1) Два вектора коллинеарны, если их отношения равны

2) Два вектора коллинеарны, если их векторное пр-е равно нулю.

Пример внизу.

4. Свойства линейных операций над векторами

Сложение векторов коммутативно: .

Сложение векторов ассоциативно: .

Прибавление нулевого вектора к любому не меняет последнего: .

Для любого вектора существует вектор такой, что или .

Умножение вектора на число ассоциативно: . Умножение вектора на число дистрибутивно относительно сложения чисел: .

Дистрибутивность умножения векторов относительно сложения

Умножение вектора на число дистрибутивно относительно сложения векторов: .

Очевидно, умножение на единицу не меняет вектор: .


 


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.006 сек.)