АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Измерение тока и напряжения

Читайте также:
  1. III. ИЗМЕРЕНИЕ ИНФОРМАЦИИ
  2. III. ПЕРВИЧНОЕ ИЗМЕРЕНИЕ СОЦИАЛЬНЫХ ХАРАКТЕРИСТИК
  3. YIII.3.3.Измерение
  4. Автоматический регулятор напряжения генераторов серии МСК завода им. М.И. Калинина
  5. Автоматический регулятор напряжения типа МСС
  6. Альфред Бине (1857 – 1911)- тестология интеллекта – измерение умственных способностей человека
  7. Безработица – сущность и измерение
  8. Безработица: понятие, измерение, виды и последствия.
  9. Безработица: сущность, типы. Измерение уровня безработицы. Экономические и социальные последствия.
  10. В. Измерение неравенства доходов
  11. Валовой национальный продукт и его измерение
  12. Валовый внутренний продукт и его измерение по доходам и расходам.

Измерение и контроль тока и напряжения в условиях агропромышленного производства – наиболее распространенный вид измерений электрических величин. В зависимости от рода, частоты и формы кривой тока применяют те или иные методы и средства измерений и контроля тока и напряжения. Ток и напряжение непосредственно измеряют электромеханическими и цифровыми амперметрами и вольтметрами со стрелочными или цифровыми отсчетными устройствами. Применение метода сравнения с мерой позволяет измерять величины с меньшими погрешностями, чем непосредственно.

Измерения в цепях постоянного тока. В условиях производства и при научных исследованиях возникает необходимость в измерении и контроле в установках постоянного тока от 10–17 до 106 А и напряжений от 10–7 до 108 В. Для этого используют различные средства.

Малые токи и напряжения измеряют непосредственно приборами высокой чувствительности - магнитоэлектрическими гальванометрами.

Постоянные токи не более 200 мА измеряют магнитоэлектрическими миллиамперметрами.

Непосредственное измерение и контроль напряжений (до 600 В) в установках постоянного тока осуществляют магнитоэлектрическими вольтметрами.

Для регистрации токов и напряжений в цепях постоянного тока используют самопишущие приборы.

Измерения в цепях синусоидального тока связаны с определением среднего (средневыпрямленного), действующего (среднего квадратичного) и амплитудного (максимального) значений тока и напряжения. Поскольку все эти значения связаны между собой коэффициентами формы или и амплитуды или , можно измерив одно из них, определить другие. Для измерения средних значений применяют электронные и цифровые приборы. Для измерения действующих значений тока (до 100 А) и напряжения (до 600 В) в цепях синусоидального тока промышленной частоты применяют в основном электромагнитные приборы. Для измерения тока и напряжения в установках с повышенными частотами (например, в установках с ручным инструментом) электромагнитные приборы не используют из-за больших погрешностей измерений. Для этого применяют тепловые, электронные и цифровые приборы. Мгновенные значения токов и напряжений различной формы и частоты регистрируют с помощью самопишущих приборов и электронно-лучевых осциллографов.

В трехфазных системах токи и напряжения измеряют теми же приборами, что и в однофазных цепях. В симметричной трехфазной системе для контроля линейных токов и напряжений можно использовать один амперметр или вольтметр. В несимметричных системах для контроля линейных напряжений часто применяют один вольтметр с переключателем.

Независимо от способа и применяемого средства измерений и контроля тока и напряжения результаты измерений содержат погрешности, одна из составляющих которых обусловлена потреблением мощности измерительными приборами. Так, при включении амперметра с сопротивлением в цепь с напряжением U по цепи протекает ток меньший, чем до включения прибора. Если ток в цепи до включения амперметра (здесь – сопротивление цепи без прибора), а после его включения , то относительная погрешность измерения тока

. (20.1)

Поэтому для измерения тока следует выбирать амперметр с возможно меньшим сопротивлением, а для измерения напряжения – вольтметр с возможно большим сопротивлением. В этом случае погрешности измерений будут минимальными.

О влиянии метрологических свойств вольтметров на оценку качества напряжения можно судить по следующему примеру. Действующими для сельских электрических сетей нормами допускаются колебания напряжения на входе потребителя до ±5 % от номинального. Если для измерения напряжения в сети 220 ± 11 В (с учетом колебания) использовать вольтметр класса точности 1,5 с диапазоном измерений 0...250 В, то он может показать
220 ± 14,75 В, что превышает нормируемое колебание на ± 1,7%.


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.)