АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Вопрос 5. Этапы системного анализа

Читайте также:
  1. E. Некорректный вопрос
  2. FAST (Методика быстрого анализа решения)
  3. I. Два подхода в психологии — две схемы анализа
  4. I. Перечень вопросов и тем для подготовки к экзамену
  5. I. Подготовительные этапы
  6. I. ЭТАПЫ ПРОТЕКАНИЯ КОНФЛИКТА
  7. I. Этапы развития бронхиальной астмы
  8. I.3. Основные этапы исторического развития римского права
  9. II. Вопросительное предложение
  10. II. Организация и этапы статистического исследования
  11. II. ОСНОВНЫЕ ЭТАПЫ ФАРМАЦЕВТИЧЕСКОГО АНАЛИЗА
  12. II. Этапы правления Александра I

 

В большинстве случаев практического применения системного анализа для исследования свойств и последующего оптимального управления системой можно выделить следующие основные этапы:

- Содержательная постановка задачи

- Построение модели изучаемой системы

- Отыскание решения задачи с помощью модели

- Проверка решения с помощью модели

- Подстройка решения под внешние условия

- Осуществление решения

 

В каждом конкретном случае этапы системного анализа занимают различный “удельный вес” в общем объеме работ по временным, затратным и интеллектуальным показателям. Очень часто трудно провести четкие границы — указать, где оканчивается данный этап и начинается очередной.

 

Вопрос 6. Структура системного анализа

Общий подход к решению проблем может быть представлен как цикл (рисунок). При этом в процессе функционирования ре­альной системы выявляется проблема практики как несоответствие существующего положения дел требуемому. Для решения проблемы проводится системное исследование (декомпозиция, анализ и синтез) системы, снимающее проблему. В ходе синтеза осуществляется оценка анализируемой и синтезируемой систем. Реализация синтезированной системы в виде предлагаемой фи­зической системы позволяет провести оценку степени снятия про­блемы практики и принять решение на функционирование мо­дернизированной (новой) реальной системы. При таком представлении становится очевидным еще один аспект определения системы: система есть средство решения про­блем.

 

 

Оценка снятия проблемы Рисунок- Общий подход к решению проблем

Основные задачи системного анализа могут быть представ­лены в виде трехуровневого дерева функций (рисунок).


J

На этапе декомпозиции, обеспечивающем общее пред­ставление системы, осуществляются:

1. Определение и декомпозиция общей цели исследования и основной функции системы как ограничение траектории в про­странстве состояний системы или в области допустимых ситуа­ций. Наиболее часто декомпозиция проводится путем построе­ния дерева целей и дерева функций.

2. Выделение системы из среды (разделение на систему/«неси- стему») по критерию участия каждого рассматриваемого элемента в процессе, приводящем к результату на основе рассмотрения системы как составной части над системы.

3. Описание воздействующих факторов.

4. Описание тенденций развития, неопределенностей разного рода.

5. Описание системы как «черного ящика».

6. Функциональная (по функциям), компонентная (по виду элементов) и структурная (по виду отношений между элемента­ми) декомпозиции системы.

Глубина декомпозиции ограничивается. Декомпозиция дол­жна прекращаться, если необходимо изменить уровень абстрак­ции - представить элемент как подсистему. Если при декомпози­ции выясняется, что модель начинает описывать внутренний алгоритм функционирования элемента вместо закона его функ­ционирования в виде «черного ящика», то в этом случае произош­ло изменение уровня абстракции. Это означает выход за преде­лы цели исследования системы и, следовательно, вызывает пре­кращение декомпозиции.

В автоматизированных методиках типичной является деком­позиция модели на глубину 5-6 уровней. На такую глубину де­композируется обычно одна из подсистем. Функции, которые требуют такого уровня детализации, часто очень важны, и их де­тальное описание дает ключ к секретам работы всей системы.

В общей теории систем доказано, что большинство систем могут быть декомпозированы на базовые представления подсис­тем. К ним относят: последовательное (каскадное) соединение элементов, параллельное соединение элементов, соединение с помощью обратной связи.

Проблема проведения декомпозиции состоит в том, что в сложных системах отсутствует однозначное соответствие между законом функционирования подсистем и алгоритмом, его реали­зующим. Поэтому осуществляется формирование нескольких ва­риантов (или одного варианта, если система отображена в виде иерархической структуры) декомпозиции системы.

Рассмотрим некоторые наиболее часто применяемые страте­гии декомпозиции.

Функциональная декомпозиция. Декомпозиция базируется на анализе функций системы. При этом ставится вопрос что делает система, независимо от того, как она работает. Основанием раз­биения на функциональные подсистемы служит общность функ­ций, выполняемых группами элементов.

Декомпозиция по жизненному циклу. Признак выделения под­систем - изменение закона функционирования подсистем на раз­ных этапах цикла существования системы «от рождения до гибе­ли». Рекомендуется применять эту стратегию, когда целью систе­мы является оптимизация процессов и когда можно определить последовательные стадии преобразования входов в выходы.

Декомпозиция по физическому процессу. Признак выделения подсистем - шаги выполнения алгоритма функционирования подсистемы, стадии смены состояний. Хотя эта стратегия полез­на при описании существующих процессов, результатом ее часто может стать слишком последовательное описание системы, ко­торое не будет в полной мере учитывать ограничения, диктуе­мые функциями друг другу. При этом может оказаться скрытой последовательность управления. Применять эту стратегию сле­дует, только если целью модели является описание физического процесса как такового.

Декомпозиция по подсистемам (структурная декомпозиция). Признак выделения подсистем - сильная связь между элемента­ми по одному из типов отношений (связей), существующих в сис­теме (информационных, логических, иерархических, энергетичес­ких и т.п.). Силу связи, например, по информации можно оце­нить коэффициентом информационной взаимосвязи подсистем k = N/Nq, где N - количество взаимоиспользуемых информаци­онных массивов в подсистемах, N0 - общее количество информа­ционных массивов. Для описания всей системы должна быть по­строена составная модель, объединяющая все отдельные моде­ли. Рекомендуется использовать разложение на подсистемы, только когда такое разделение на основные части системы не из­меняется. Нестабильность границ подсистем быстро обесценит как отдельные модели, так и их объединение.

На этапе анализа, обеспечивающем формирование деталь­ного представления системы, осуществляются:

1. Функционально-структурный анализ существующей систе­мы, позволяющий сформулировать требования к создаваемой системе. Он включает уточнение состава и законов функциони­рования элементов, алгоритмов функционирования и взаимовли­яний подсистем, разделение управляемых и неуправляемых ха­рактеристик, задание пространства состояний Z, задание пара­метрического пространства Г, в котором задано поведение системы, анализ целостности системы, формулирование требо­ваний к создаваемой системе.

2. Морфологический анализ - анализ взаимосвязи компонентов.

3. Генетический анализ - анализ предыстории, причин разви­тия ситуации, имеющихся тенденций, построение прогнозов.

4. Анализ аналогов.

5. Анализ эффективности (по результативности, ресурсоем­кое™, оперативности). Он включает выбор шкалы измерения, формирование показателей эффективности, обоснование и фор­мирование критериев эффективности, непосредственно оценива­ние и анализ полученных оценок.

6. Формирование требований к создаваемой системе, вклю­чая выбор критериев оценки и ограничений.

Этап синтеза системы, решающей проблему, представлен в виде упрощенной функциональной диаграммы на рис. 1.10.

На этом этапе осуществляются:

1. Разработка модели требуемой системы (выбор математи­ческого аппарата, моделирование, оценка модели по критериям адекватности, простоты, соответствия между точностью и слож­ностью, баланса погрешностей, многовариантности реализаций, блочности построения).

2. Синтез альтернативных структур системы, снимающей про­блему.

3. Синтез параметров системы, снимающей проблему.

4. Оценивание вариантов синтезированной системы (обосно­вание схемы оценивания, реализация модели, проведение экспе­римента по оценке, обработка результатов оценивания, анализ результатов, выбор наилучшего варианта).

Рисунок -Упрощенная функциональная диаграмма этапа синтеза системы, решающей проблему

 

Оценка степени снятия проблемы проводится при заверше­нии системного анализа.

Наиболее сложными в исполнении являются этапы декомпо­зиции и анализа. Это связано с высокой степенью неопределен­ности, которую требуется преодолеть в ходе исследования.

Рассмотрим процесс формирования общего и детального представления системы, включающий девять основных стадий.

Формирование общего представления системы

Стадия 1. Выявление главных функций (свойств, целей, предназначения) системы. Формирование (выбор) основных пред­метных понятий, используемых в системе. На этой стадии речь идет об уяснении основных выходов в системе. Именно с этого лучше всего начинать ее исследование. Должен быть определен тип выхода: материальный, энергетический, информационный, они должны быть отнесены к каким-либо физическим или дру­гим понятиям (выход производства - продукция (какая?), выход системы управления - командная информация (для чего? в каком виде?), выход автоматизированной информационной системы - сведения (о чем?) и т.д.).

Стадия 2. Выявление основных функций и частей (моду­лей) в системе. Понимание единства этих частей в рамках систе­мы. На этой стадии происходит первое знакомство с внутренним содержанием системы, выявляется, из каких крупных частей она состоит и какую роль каждая часть играет в системе. Это стадия получения первичных сведений о структуре и характере основ­ных связей. Такие сведения следует представлять и изучать при помощи структурных или объектно-ориентированных методов анализа систем, где, например, выясняется наличие преимуще­ственно последовательного или параллельного характера соеди­нения частей, взаимной или преимущественно односторонней направленности воздействий между частями и т.п. Уже на этой стадии следует обратить внимание на так называемые системо­образующие факторы, т.е. на те связи, взаимообусловленности, которые и делают систему системой.

Стадия 3. Выявление основных процессов в системе, их роли, условий осуществления; выявление стадийности, скачков, смен состояний в функционировании; в системах с управлением - выделение основных управляющих факторов. Здесь исследуется динамика важнейших изменений в системе, ход событий, вводят­ся параметры состояния, рассматриваются факторы, влияющие на эти параметры, обеспечивающие течение процессов, а также условия начала и конца процессов. Определяется, управляемы ли процессы и способствуют ли они осуществлению системой своих главных функций. Для управляемых систем уясняются основные управляющие воздействия, их тип, источник и степень влияния на систему.

Стадия 4. Выявление основных элементов «несистемы», с которыми связана изучаемая система. Выявление характера этих связей. На этой стадии решается ряд отдельных проблем. Исследуются основные внешние воздействия на систему (входы). Определяются их тип (вещественные, энергетические, информаци­онные), степень влияния на систему, основные характеристики. Фиксируются границы того, что считается системой, определя­ются элементы «несистемы», на которые направлены основные выходные воздействия. Здесь же полезно проследить эволюцию системы, путь ее формирования. Нередко именно это ведет к по­ниманию структуры и особенностей функционирования системы. В целом данная стадия позволяет лучше уяснить главные функ­ции системы, ее зависимость и уязвимость или относительную независимость во внешней среде.

Стадия 5. Выявление неопределенностей и случайностей в ситуации их определяющего влияния на систему (для стохасти­ческих систем).

Стадия 6. Выявление разветвленной структуры, иерархии, формирование представлений о системе как о совокупности мо­дулей, связанных входами-выходами.

Стадией 6 заканчивается формирование общих представле­ний о системе. Как правило, этого достаточно, если речь идет об объекте, с которым мы непосредственно работать не будем. Если же речь идет о системе, которой надо заниматься для ее глубоко­го изучения, улучшения, управления, то нам придется пойти даль­ше по спиралеобразному пути углубленного исследования сис­темы.

Формирование детального представления системы

Стадия 7. Выявление всех элементов и связей, важных для целей рассмотрения. Их отнесение к структуре иерархии в систе­ме. Ранжирование элементов и связей по их значимости.

Стадии 6 и 7 тесно связаны друг с другом, поэтому их обсуж­дение полезно провести вместе. Стадия 6 - это предел познания «внутрь» достаточно сложной системы для лица, оперирующего ею целиком. Более углубленные знания о системе (стадия 7) бу­дет иметь уже только специалист, отвечающий за ее отдельные части. Для не слишком сложного объекта уровень стадии 7 - зна­ние системы целиком - достижим и для одного человека. Таким образом, хотя суть стадий 6 и 7 одна и та же, но в первой из них мы ограничиваемся тем разумным объемом сведений, который доступен одному исследователю.

При углубленной детализации важно выделять именно суще­ственные для рассмотрения элементы (модули) и связи, отбрасы­вая все то, что не представляет интереса для целей исследования. Познание системы предполагает не всегда только отделение су­щественного от несущественного, но также уделение дополнитель­ного внимания более существенному. Детализация должна зат­ронуть и уже рассмотренную в стадии 4 связь системы с «несисте­мой». На стадии 7 совокупность внешних связей считается

 


 


1 | 2 | 3 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.005 сек.)