|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Измерение сопротивления изоляции (токов утечки)Этот метод из-за своей простоты нашел очень широкое применение в практике и является одним из основных методов контроля качества изоляции. Известно, что любая изоляция имеет конечную величину сопротивления, хотя и достаточно большую. Поэтому при приложении напряжения через изоляцию, кроме токов на зарядку геометрической емкости и абсорбционных токов, течет ток, определяемый электропроводностью диэлектрика. С увеличением дефектности изоляции ток утечки возрастает. Это явление и положено в основу данного метода. Сопротивление изоляции равно:
.
На постоянном напряжении будет изменяться во времени, поскольку на величину тока будут влиять процессы медленной поляризации. На рис. 2.10 показан характер изменения тока через изоляцию и сопротивление изоляции от времени. Рис. 2.10. Изменение тока утечки и сопротивления изоляции во времени
Опытным путем установлено, что для большинства изоляционных конструкций время достижения установившегося значения тока утечки I меньше 1 мин., т. е. к этому времени после приложения напряжения R также достигнет установившегося значения. Резкое падение показывает на далеко зашедшее развитие дефекта в изоляции, или на наличие сквозного проводящего пути, или пробоя. Обычно суждение об изоляции составляется на основании сравнения с результатом предыдущих измерений или заводских данных. Измерение сопротивления изоляции производится с помощью специальных приборов — мегаомметров, у которых шкала проградуирована в МОм или кОм. Конструкции отечественных мегаомметров для измерения различны. Наибольшее применение нашли индукторные (с ручным приводом) типа М-110 на 500 В, МОМ-5 на 1000 В и МС-06 на 2500. В настоящее время находят широкое применение электронные мегаомметры, например, типа ЭС0210.
2.6.3. Измерение tg Диэлектрические потери в изоляции характеризуются углом диэлектрических потерь. Если обратиться к рис. 2.11, то tg определяется отношением активной составляющей тока в диэлектрике к емкостной составляющей
tg , где Ia — активная составляющая тока через диэлектрик; Ic — реактивная составляющая тока через диэлектрик. Рис.2.11. Векторная диаграмма токов через диэлектрик с потерями
Измерение величины tg , а не величины самих диэлектрических потерь:
P = U Ic tg = UC tg .
имеет следующие преимущества: 1) величина tg как характеристика материала не зависит от размеров объекта, но позволяет обнаружить возникающие в изоляции дефекты, особенно если они распространены по всему объему; 2) величина tg может быть непосредственно измерена мостом переменного тока. Метод контроля изоляции путем измерения угла диэлектрических потерь является самым эффективным и распространенным. Он позволяет выявить следующие дефекты: увлажнение, воздушные (газовые) включения с процессами ионизации, неоднородности и загрязнения и др. Измерения tg ведутся при напряжении U<10 кВ и частоте 50 Гц при помощи высоковольтных мостовых схем (мост Шеринга). Оценка состояния изоляции по значению tg предусматривается нормативами почти для всех видов изоляции. В зависимости от конструктивных особенностей объекта (заземлен один электрод или нет) используется нормальная или перевернутая схемы моста Шеринга. По нормальной схеме обычно выполняются измерения в лабораториях, а также измерения междуфазной изоляции (кабель, трансформатор и т.п.). Выпускаются мосты типа МДП, которые позволяют измерять tg при емкостях объектов от 40 до 20000 пФ. При работе с перевернутой схемой нужно иметь в виду, что от измерительных ветвей и конденсатора С3 (измеряемый объект) идут проводники, находящиеся под высоким напряжением. Для измерений по перевернутой схеме применяется малогабаритный переносной мост МД-16, который позволяет измерять tg при емкостях объекта от 30 до 40000 пФ. Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.004 сек.) |