|
|||||||||||||||||||||||||
|
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Некоторые примеры применения производной в алгебре, геометрии и физикеЛекция № 3. Тема: «Производная и дифференциал». Основные вопросы: Приращение аргумента, приращение функции Правила дифференцирования функций. Таблица производных. Производные от сложных функций. Производные высших порядков. Некоторые примеры применения производной в алгебре, геометрии и физике. Приращение аргумента, приращение функции. Пусть функция у= f(х) определена в точке х0 и некоторой ее окрестности, придадим точке х0 приращение Δх и получим точку х0+Δх, значение функции в этой точке – f(х0+Δх). Разность значений f (х0+Δх) – f(х0) называется приращением функции, обозначается приращение функции Δf или Δу, т.е. Δf=f(х0+Δх) – f(х0). Рис. 1
у Рис.1
Δу
х0 х0 + Δх Производная функция у = f(х), в точке х0 определяется как предел отношения приращения функции Δу к приращению аргумента Δх, при стремлении Δх к нулю. f `(x0) = lim (Δf/Δx). Этот предел будет иметь конечное значение, если только и числитель стремиться к нулю (приращение функции Δf→0). Производная имеет смысл скорости изменения какого – либо показателя. Дифференциал определяется как главная линейная часть приращения функции. Дифференциал показывает, как изменялась бы величина, если бы скорость ее изменения была бы постоянной. Дифференциал для функции у=f(х) обозначается через dy или df. Вычисляется он по формуле dy=f `(x)dx, где f ` (x) – производная функция f(x), а dx – число равное приращению независимой переменной (аргумента) ∆х. Для вычисления производной выведены правила нахождения производной и таблицы производных элементарных функций. Функция, имеющая производную в точке х, называется дифференцируемой в этой точке. Если функция имеет производную в каждой точке интервала, то она называется дифференцируемой в интервале. Поиск по сайту: |
||||||||||||||||||||||||
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (9.784 сек.) |