|
|||||||
|
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Підпростори нормованого простору
У нормованому просторі основний інтерес представляють замкнені лінійні многовиди, тобто многовиди, які містять всі свої точки дотику. Означення: Замкнений лінійний многовид нормованого простору називається підпростором. Твердження. У скінчено вимірному нормованому просторі будь-який лінійний многовид є підпростором. У нескінченно вимірному нормованому просторі це не так. Наприклад. В просторі Означення: Найменший замкнений лінійний підпростір, який містить систему елементів Позначають лінійне замикання системи - Означення: Система елементів
Приклад. За теоремою Вейєрштрасса сукупність всіх функцій
Поиск по сайту: |
||||||
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.184 сек.) |