АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Модифицированный метод Эйлера

Читайте также:
  1. A. Учебно-методическое обеспечение самостоятельной работы студентов
  2. B) должен хорошо знать только физико-химические методы анализа
  3. B. метода разделения смеси веществ, основанный на различных дистрибутивных свойствах различных веществ между двумя фазами — твердой и газовой
  4. D. аналитический метод.
  5. I. Естественные методы
  6. I.Организационно – методический раздел
  7. II Методика виконання курсової роботи.
  8. II. ПОРЯДОК И МЕТОДИКА ПРОВЕДЕНИЯ ЭКЗАМЕНА
  9. II. Учебно-методический блок
  10. II. Учебно-методический блок
  11. III Барьерный метод
  12. III. Методика расчета эффективности электрофильтра.

 

Рассмотрим дифференциальное уравнение (1) y/=f(x,y) с начальным условием y(x0)=y0. Разобьем наш участок интегрирования на n равных частей. На малом участ интегральную кривую заменим прямой линией.

 

Рисунок 1 Метод Эйлера в графическом виде

 

Получаем точку Мккк). Через Мк проводим касательную:

 

у=ук=f(xk,yk)(x-xk)

 

Делим отрезок (хкк1) пополам

xNk/=xk+h/2=xk+1/2 (6)

yNk/=yk+f(xk,yk)h/2=yk+yk+1/2

 

 

Получаем точку Nk/. В этой точке строим следующую касательную:

 

y(xk+1/2)=f(xk+1/2, yk+1/2)=αk (7)

 

Из точки Мк проводим прямую с угловым коэффициентом αк и определяем точку пересечения этой прямой с прямой Хк1. Получаем точку Мк/. В качестве ук+1 принимаем ординату точки Мк/. Тогда:

 

ук+1ккh

xk+1=xk+h

αk=f(xk+h/2, yk+f(xk,Yk)h/2) (8)

yk=yk-1+f(xk-1,yk-1)h (8)

 

(8)-рекурентные формулы метода Эйлера.

Сначала вычисляют вспомогательные значения искомой функции ук+1/2 в точках хк+1/2, затем находят значение правой части уравнения (5) в средней точке y/k+1/2=f(xk+1/2, yk+1/2) и определяют ук+1.

Для оценки погрешности в точке хк проводят вычисления ук с шагом h, затем с шагом 2h и берут 1/3 разницы этих значений:

 

| ук*-у(хк)|=1/3(yk*-yk), (9)

 

где у(х)-точное решение дифференциального уравнения.

Таким образом, методом Эйлера можно решать уравнения любых порядков. Например, чтобы решить уравнение второго порядка y//=f(y/,y,x) c начальными условиями y/(x0)=y/0, y(x0)=y0, выполняется замена


y/=z (10)

z/=f(x,y,z)

 

Тем самым преобразуются начальные условия

 

y(x0)=y0, z(x0)=z0, z0=y/0 (11)

 

//Алгоритм решения вашей задачи

// Разработка программы

Какие переменные, функции, процедуры использовали

//Отладка программы на контрольном примере. Берете простейший пример и показываете что программа работает правильно.

//Сравнение результатов расчета и оценка погрешностей (Эксель, Маткад)


1 | 2 | 3 | 4 | 5 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.)