АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Сотовые каналы связи и сети

Читайте также:
  1. II. Логистические каналы и цепи.
  2. IV. Алгоритм действий командира (начальника) при увольнении военнослужащего в связи с невыполнением им условий контракта
  3. V. Регламент переговоров по поездной радиосвязи
  4. VII. Расчет количества электроэнергии, потребляемой электровозом из контактной сети.
  5. А потом он обратился к ним с увещанием в связи с тем, что они смеялись, когда кто-нибудь испускал ветры, и сказал: «Почему некоторые из вас смеются над тем, что делают и сами?»
  6. Акустические каналы утечки конфиденциальной информации
  7. Анализ взаимосвязи спроса и предложения
  8. Анализ взаимосвязи уровня социального интеллекта и самооценки в подростковом возрасте
  9. Анализ и связи понятия Паразит
  10. Анализ относительных показателей (коэффициентов) - расчет отношений между отдельными позициями отчета или позициями разных форм отчетности, определение взаимосвязи показателей.
  11. Б) матчи, в которых футболист не мог принять участие в связи с травмой или болезнью, которые не были напрямую связаны с его профессиональной деятельностью в качестве футболиста...
  12. Белое вещество и кора мозжечка: нисходящие, восходящие, моховидные, лазящие и параллельные нервные волокна, межнейрональные связи.

Радиоканалы сотовой связи строятся по тем же принципам, что и сотовые телефонные сети (рис.5.3). Сотовая связь - это беспроводная телекоммуникационная система, состоящая из сети наземных базовых приемо-передающих станций и сотового коммутатора (или центра коммутации мобильной связи). Базовые станции (БС) подключаются к центру коммутации, который обеспечивает связь, как между базовыми станциями, так и с другими телефонными сетями и с глобальной сетью Интернет. По выполняемым функциям центр коммутации аналогичен обычной АТС проводной связи.

LMDS (Local Multipoint Distribution System) - это стандарт сотовых сетей беспроводной передачи информации для фиксированных абонентов. Система строится по сотовому принципу, одна базовая станция позволяет охватить район радиусом несколько километров (до 10 км) и подключить несколько тысяч абонентов. Сами БС объединяются друг с другом высокоскоростными наземными каналами связи либо радиоканалами. Скорость передачи данных до 45 Мбит/c.

Радиоканалы WiMAX (Worldwide Interoperability for Microwave Access) аналогичны Wi-Fi. WiMAX, в отличие от традиционных технологий радиодоступа, работает и на отраженном сигнале, вне прямой видимости базовой станции. Эксперты считают, что мобильные сети WiMAX открывают гораздо более интересные перспективы для пользователей, чем фиксированный WiMAX, предназначенный для корпоративных заказчиков. Информацию можно передавать на расстояния до 50 км со скоростью до 70 Мбит/с.

Радиоканалы MMDS (Multichannel Multipoint Distribution System). Эти системы способна обслуживать территорию в радиусе 50 - 60 км, при этом прямая видимость передатчика оператора является не обязательной. Средняя гарантированная скорость передачи данных составляет 500 Кбит/с - 1 Мбит/с, но можно обеспечить до 56 Мбит/с на один канал.

Рис.5.3. Беспроводная сеть на базе сотовой связи.

Радиоканалы для локальных сетей. Стандартом беспроводной связи для локальных сетей является технология Wi-Fi, Wi-Fi обеспечивает подключение в двух режимах: точка-точка (для подключения двух ПК) и инфраструктурное соединение (для подключения несколько ПК к одной точке доступа). Скорость обмена данными до 11 Mбит/с при подключении точка-точка и до 54 Мбит/с при инфраструктурном соединении.

Радиоканалы Bluetooth - это технология передачи данных на короткие расстояния (не более 10 м) и может быть использована для создания домашних сетей. Скорость передачи данных не превышает 1 Мбит/с.

5.5. Радиопередача в узком диапазоне (одночастотная передача).

Этот способ напоминает вешание обыкновенной радиостанции. Пользователи настраивают передатчики и приемники на определенную частоту. При этом прямая видимость необязательна, площадь вещания составляет около 46500 м2 (500000 квадратных футов). Однако, поскольку используется сигнал высокой частоты, он не проникает через металлические или железобетонные преграды. Доступ к такому способу связи осуществляется через поставщика услуг, например Motorola. Связь относительно медленная (около 4,8 Мбит/с).

5.6. Радиопередача в рассеянном спектре.

При этом способе сигналы передаются на нескольких частотах, что позволяет избежать проблем, присущих одночастотной передаче. Доступные частоты разделены на каналы. Адаптеры в течение заданного промежутка времени настроены на определенный канал, а затем переключаются на другой. Переключение всех компьютеров в сети происходит синхронно. Данный способ передачи обладает некоторой «встроенной» зашитой: чтобы подслушать передачу, необходимо знать алгоритм переключения каналов. Если необходимо усилить защиту данных от несанкционированного доступа, применяют кодирование. Скорость передачи 250 Кбит/с относит данный способ к разряду самых медленных. Но есть сети, которые передают данные со скоростью до 2 Мбит/с на расстояние до 3 км на открытом пространстве и до 120 м внутри здания. Это тот случай, когда технология позволяет получить

настоящую беспроводную сеть. Например, два (или более) компьютера, оснащенные адаптерами Xircom Credit Card Netwave. с операционными системами типа Microsoft Windows могут без кабеля функционировать как

одноранговая сеть.

5.7 Микроволновые сети и системы.

Микроволновая технология помогает организовать связь между зданиями, расположенными на ограниченной территории, например в университетских городках. На сегодняшний день микроволновая технология - наиболее распространенный в Соединенных Штатах способ передачи данных на большие расстояния. Он идеален при взаимодействии в прямой видимости двух точек, таких, как:

1. спутник и наземная станция;

2. два здания;

3. любые объекты, которые разделяет большое открытое пространство (например, водная поверхность или пустыня).

В микроволновую систему входят следующие компоненты.

1. Два радиотрансивера. Один для генерации сигналов (передающая станция), другой - для приема (приемная станция).

2. Две направленные антенны. Они нацелены друг на друга и часто устанавливаются на вышки, что позволяет устранить возможные физические препятствия на пути радиосигнала.

5.8 Беспроводные сети на инфракрасном излучении.

Все инфракрасные беспроводные сети используют для передачи данных инфракрасные лучи. В подобных системах необходимо генерировать очень сильный сигнал, так как в противном случае значительное влияние будут оказывать другие источники, например свет из окна. Этот способ позволяет передавать сигналы с большой скоростью, поскольку инфракрасный свет имеет широкий диапазон частот. Инфракрасные сети способны нормально функционировать на скорости 1 Мбит/с. Существует четыре типа инфракрасных сетей.

Сети прямой видимости. В таких сетях передача возможна лишь в случае прямой видимости между передатчиком и приемником.

Сети на рассеянном инфракрасном излучении. При этой технологии сигналы, отражаясь от стен и потолка, в итоге достигают приемника. Эффективная область действия ограничена примерно 30 м (100 футами), и скорость передачи невелика (из-за неравномерности сигнала).

Сети на отраженном инфракрасном излучении. В этих сетях оптические трансферы, расположенные рядом с компьютером, передают сигналы в определенное место, откуда они пересылаются соответствующему компьютеру. Модулированные оптические сети. Эти инфракрасные беспроводные сети соответствуют жестким требованиям мультимедийной среды и практически не уступают в скорости кабельным сетям. Хотя скорость инфракрасных сетей и удобствоих использования очень привлекательны, возникают трудности при передаче сигналов на расстояние более 30 м (100 футов). К тому же такие сети подвержены помехам со стороны сильныхисточников света, которые есть в большинстве организаций. Согласно мнению экспертов, доля сетей на инфракрасном излучении в ближайшие пять лет возрастет с 4,81 до 21,77 процентов. Причины этого заключаются в простоте установки, высокой пропускной способности, дешевизне сетевого оборудования и высокой степени защиты данных. Инфракрасные сетевые комплексы незаменимы в тех случаях, когда надо организовать локальную сеть в большом офисе, разделенном перегородками выше человеческого роста (чтобы избежать случайных пересечений линий сообщения). Для примера рассмотрим некоторые продукты, предлагаемые компанией Infra Lan Technologies (Acton, МА). Сетевой трансивер позволяет заменить кабельную связь в локальной сети Ethernet связью на инфракрасном излучении. Трансивер работает на длине волны 870 м и обеспечивает связь на расстоянии до 24 м. Пропускная способность устройства составляет 10 Мбит/с. Трансивер может подключаться к выходу обычного сетевого оборудования - мостов, репитеров и просто сетевых адаптеров на компьютерах. Малый размер корпуса трансивера делает его использование особенно удобным. Если перейти к более сложным сетевым устройствам, то на каждой рабочей станции может быть установлено два оптических узла, содержащие свето - и фотодиоды для приема и передачи информации. Это позволяет организовать двунаправленный кольцевой поток информации. Компания Infra Lan Technologies выпускает специальные устройства, позволяющие автоматически обнаруживать места разрыва связи и перенаправлять поток информации в обход повреждения. Такие устройства могут быть подсоединены к сетевому оборудованию (мостам, репитерам и т.д.) также на физическом уровне, что исключает необходимость каких-либо переделок. Подчеркнем, что хотя геометрически среда распространения информации представляет собой кольцо, на логическом уровне данная система реализует топологию Ethernet. Компания Infra Lan выпускает также оптические Hub(ы), обеспечивающие передачу информации на полные 360 градусов. Он может быть подключен к локальной сети, а посылаемые им сигналы могут приниматься трансиверами, находящимися на расстоянии до 24 м. Таким образом, можно сказать, что продукция компании Infra Lan, учитывая ее низкую стоимость и высокую пропускную способность, может составить вполне серьезную конкуренцию офисным кабельным сетям.

5.9 Лазерные сети

Лазерная технология похожа на инфракрасную тем, что требует прямой видимости между передатчиком и приемником. Если по каким-либо причинам луч будет прерван, это прервет и передачу.

5.10 Оборудование беспроводных и спутниковых сетей

Часть беспроводного оборудования была рассмотрена в п.1.1 первой главы. Здесь же приведем обзор дополнительного беспроводного оборудования для Wi-Fi, WiMAX и лазерных сетей. В зависимости от используемой технологии беспроводные сети можно разделить на три типа: локальные вычислительные сети; расширенные локальные вычислительные сети; мобильные сети.

Основные различия между этими типами сетей - параметры передачи. Локальные и расширенные локальные вычислительные сети используют передатчики и приемники, принадлежащие той организации, в которой функционирует сеть. Для переносных компьютеров средой передачи служат общедоступные сети, например телефонная сеть или Интернет. Типичная беспроводная сеть выглядит и функционирует практически так же, как кабельная, за исключением среды передачи. Беспроводной сетевой адаптер с трансивером установлен в каждом компьютере, и пользователи работают так, будто их компьютеры соединены кабелем.

Передача «точка-точка». Данный способ передачи несколько выходит за рамки существующего определения сети. Технология передачи «точка-точка» предусматривает обмен данными только между двумя компьютерами, а не между несколькими компьютерами и периферийными устройствами. Чтобы организовать сеть с беспроводной передачей, необходимо использовать дополнительные компоненты, такие, как одиночные трансиверы и хост-трансиверы. Их можно устанавливать как на автономных компьютерах, так и на компьютерах, подключенных к сети. Эта технология, основанная на последовательной беспроводной передаче данных, обеспечивает:

1. высокоскоростную и безошибочную передачу по радиоканалу «точка-точка»;

2. проникание сигнала через стены и перекрытия;

3. скорость передачи от 1.2 до 38.4 Кбит/с на расстояние до 60 м внутри здания и 530 м - в условиях прямой видимости.

Подобные системы позволяют передавать сигналы между компьютерами, между компьютерами и другими устройствами, например принтерами или сканерами штрих-кода, мобильными телефонами. Некоторые типы беспроводных компонентов способны функционировать в расширенных локальных вычислительных сетях так же, как их аналоги - в кабельных сетях. Беспроводной мост, например, соединяет сети, находящиеся друг от друга на расстоянии до 5 километров. Если расстояние, которое преодолевает обычный беспроводной мост, недостаточно, можно установить мост дальнего действия. Для работы с сетями Ethernet и Token Ring на расстояние до 40 км он также использует технологию радиопередачи в рассеянном спектре. Его стоимость (как и обыкновенного беспроводного моста) может оказаться, вполне удовлетворительной, так как отпадут затраты на аренду микроволновых каналов или линий Т1. Линия Т1 - это стандартная цифровая линия, предназначенная для передачи данных со скоростью до 1,544 Мбит/с. По ней можно передавать речь, и данные.

Беспроводной маршрутизатор(рис.5.4).

 

Рис.5.4. Беспроводной маршрутизатор Netgear (WGR612-100RUS) 54G.

Беспроводной мост. Компонент, называемый беспроводным мостом (wireless bridge) (рис.5.5), помогает установить связь между зданиями без помощи кабеля. Если обычный мост служит людям для перехода с одного берега реки на другой, то беспроводной мост прокладывает для данных путь между двумя зданиями. Мост MR LAN/Bridge Plus, например, использует технологию радиопередачи в рассеянном спектре для создания магистрали, соединяющей две ЛВС. Расстояние между ними, в зависимости от условий, может достигать 5 км. Стоимость такого устройства не будет чрезмерной, т.к. не нужно арендовать линии связи.

Беспроводный роутер (wireless router). Используется для соединения между собой различных сегментов локальной вычислительной сети. Бывают беспроводные (рис.5.6(а)) и смешанные роутеры. Смешанные роутеры (рис.5.6(б)) позволяют соединять проводные и беспроводные сегменты локальной сети. Иногда они также используются как принт-серверы и связаны с модемом для выхода в сеть Интернет.

Антенны для Wi-Fi, WiMAX и спутниковых сетей. Каждый знает, что без антенны не сможет работать ни радиоприемник, ни телевизор. Точно так же без антенны не будет работать беспроводная точка доступа, которая в данном случае выступает одновременно и в роли приемника, и в роли передатчика. Антенна - это и излучатель радиоволн, и их приемник. Конфигурация антенны определяет зону покрытия беспроводной точки доступа, то есть ту зону, где точка доступа излучает сигнал, который способны принять другие клиенты беспроводной сети.

Рис.5.5. Два беспроводных роутера связаны с беспроводным мостом.

а) беспроводной роутер.

б) смешанный роутер объединяет проводной и беспроводной сегменты сети

Рис. 5.6. Беспроводной и смешанный роутеры.

Зона покрытия беспроводной точки доступа определяется именно конструкцией, а не размерами антенны. Основная проблема большинства антенн, поставляемых в комплекте с беспроводными точками доступа, заключается в том, что они имеют недостаточно большую зону покрытия. К примеру, если в пределах комнаты или офиса одна точка доступа в состоянии обеспечить надежную работу беспроводных клиентов, то на устойчивую связь с клиентом, находящимся за стенкой, рассчитывать не приходится. А уж через две стены сможет «пробить» далеко не каждая точка доступа. Казалось бы, проблема легко разрешима - достаточно приобрести точку доступа с большей мощностью передатчика. Однако не все так просто. Дело в том, что мощность передачи Wi-Fi-устройств регламентирована в частотном диапазоне от 2400 до 2483,5 МГц. Для создания радиосетей на безлицензионной основе допускается использовать передатчики с мощностью излучения, эквивалентной изотропно-излучаемой мощности (ЭИИМ) не больше 100 мВт. В случае превышения данного показателя требуется получение лицензии на создание и эксплуатацию ведомственной радиосети передачи данных. Соответственно точек доступа и беспроводных адаптеров с мощностью передачи более 100 мВт, что эквивалентно 20 dBm, нет в продаже. Итак, все точки доступа и беспроводные адаптеры имеют одинаковую мощность передатчика, а значит, единственный способ увеличить зону покрытия беспроводной сети - использовать специальные антенны вместо традиционных.

Увеличение зоны покрытия беспроводной сети - это лишь одна из функций антенн для Wi-Fi-устройств. Другое, не менее важное их свойство заключается в том, что они позволяют изменить форму зоны покрытия, обеспечивая повышение безопасности беспроводной сети. Штатные антенны излучают сигнал равномерно во все стороны (в горизонтальной плоскости), и если точку доступа с такой антенной расположить у стены в комнате, то сигнал будет распространяться не только по вашей квартире, но и за стенку к соседу. Это позволит ему обнаружить вашу беспроводную сеть, но и предпринять попытки атаки. Если у вашего соседа вряд ли окажется своя беспроводная сеть или хотя бы ноутбук с беспроводным адаптером, то в офисе, где на одном этаже размещается несколько офисов разных компаний, такая ситуация реальна. Под соседями мы будем подразумевать соседей не только по квартире, но и по офису.

Чтобы обезопасить свою беспроводную сеть от вторжения извне, можно использовать специальные направленные антенны, которые излучают сигнал преимущественно в одном направлении. Это позволит и увеличить дальность распространения сигнала в этом направлении, ослабить или блокировать распространение сигнала в других направлениях. Разница между обычной антенной, излучающей равномерно по всем направлениям, и направленной антенной примерно такая же, как между лампочкой и фонариком. Представьте себе лампочку, освещающую комнату. Свет от нее распространяется приблизительно равномерно по всем направлениям, отчего в комнате становится светло. Однако ту же самую лампочку можно поставить в фонарь или просто установить позади нее зеркальный отражатель. В этом случае мы получим направленное распространение света. Такой луч не будет освещать все помещение, зато способен передать свет на значительно большее расстояние. Именно по такому принципу работают и внешние антенны.

Характеристики антенн. Одной из важнейших характеристик антенн является коэффициент усиления. Часто название этого параметра приводит к ошибочному предположению, что антенны способны усиливать сигнал. На самом деле это не так - если мощность передатчика, к примеру, составляет 50 мВт, то какую бы антенну мы ни поставили, мощность передаваемого сигнала будет такой же. Дело в том, что все антенны подобного рода представляют собой пассивные устройства и брать энергию для усиления передаваемого сигнала им попросту неоткуда. Что же тогда означает коэффициент усиления? Для того чтобы ответить на этот вопрос, прежде ознакомимся с такими важными понятиями, как идеальный изотропный излучатель и диаграмма направленности антенны.

Изотропный излучатель. Антенны излучают энергию в виде электромагнитных волн во всех направлениях. Однако эффективность передачи сигнала для различных направлений может быть неодинакова и характеризуется диаграммой направленности. Для оценки эффективности передачи сигнала по различным направлениям введено понятие изотропного излучателя, или изотропной антенны. Изотропный излучатель - это идеальный точечный источник электромагнитных волн, излучающий равномерно по всем направлениям. Если мысленно представить себе сферу с центром, совпадающим с изотропным излучателем, то плотность излучаемой изотропным источником энергии будет одинакова в любой точке такой сферы. Поэтому говорят, что изотропный излучатель образует равномерное по плотности энергии поле сферической формы. В природе изотропных излучателей не существует. Каждая передающая антенна, даже самая простая, излучает энергию неравномерно - в каком-то направлении ее излучение максимально. Изотропный же излучатель рассматривается исключительно в качестве некоторого эталонного излучателя, с которым удобно сравнивать все остальные антенны.

Коэффициент усиления антенны. Итак, после того как мы получили представление о таких важных понятиях, как идеальный изотропный точечный излучатель и диаграмма направленности антенны, можно сформулировать понятие коэффициента усиления антенны. Коэффициент усиления антенны определяет, насколько децибел плотность потока энергии, излучаемого антенной в определенном направлении, больше плотности потока энергии, который был бы зафиксирован в случае использования изотропной антенны. Коэффициент усиления антенны измеряется в так называемых изотропных децибелах (дБи или dBi). Напомним, что в физике мощность принято измерять в ваттах (Вт). Однако в теории связи для измерения мощности сигнала чаще используют децибелы (дБ). Данная единица измерения является логарифмической и может использоваться лишь для сравнения одноименных физических величин. К примеру, если сравниваются два значения A и B одной и той же физической величины, то отношение A/B показывает, во сколько раз одна величина больше другой. Если же рассмотреть десятичный логарифм того же самого отношения, то мы получим сравнение этих величин, выраженное в белах (Б), а выражение 10Lg(A/B) определяет сравнение этих величин в децибелах (дБ). Например, если говорят, что одна величина больше другой на 20 дБ, то это означает, что она больше другой в 100 раз.

Децибелы используются не только для сравнения величин, но и для выражения абсолютных значений. Для этого в качестве величины, с которой производится сравнение, принимается некоторое эталонное значение. Например, чтобы выразить абсолютное значение мощности сигнала в децибелах, за эталон принимается мощность в 1 мВт и уровень мощности сравнивается в децибелах с мощностью в 1 мВт. Данная единица измерения получила название децибел на милливатт (дБм) и показывает, на сколько децибел мощность измеряемого сигнала больше мощности в 1 мВт. Нетрудно рассчитать, что мощности 100 мВт соответствует мощность 20 дБм, а мощности 50 мВт - мощность 17 дБм. Так, если коэффициент усиления антенны в заданном направлении составляет 5 dBi, то это означает, что в этом направлении мощность излучения на 5 дБ (в 3,16 раза) больше, чем мощность излучения идеальной изотропной антенны. Естественно, увеличение мощности сигнала в одном направлении влечет за собой уменьшение мощности в других направлениях. Конечно, когда говорят, что коэффициент усиления антенны составляет 10 dBi, то имеется в виду направление, в котором достигается максимальная мощность излучения (главный лепесток диаграммы направленности). Зная коэффициент усиления антенны и мощность передатчика, нетрудно рассчитать мощность сигнала в направлении главного лепестка диаграммы направленности. Так, при использовании беспроводной точкой доступа с мощностью передатчика 20 dBm (100 мВт) и направленной антенны с коэффициентом усиления 10 dBi мощность сигнала в направлении максимального усиления составит 20 dBm + 10 dBi = 30 dBm (1000 мВт), то есть в 10 раз больше, чем в случае применения изотропной антенны.

Типы антенн для Wi-Fi, WiMax и спутниковых сетей. В плане использования все антенны для беспроводных устройств можно условно разделить на три большие классы: антенны для наружного (outdoor); антенны для внутреннего применения (indoor); спутниковые антенны (outdoor).Они различаются, прежде всего, своими габаритами и коэффициентом усиления. Естественно, антенны для наружного использования больше по размерам и предусматривают форму крепления либо к стене дома, либо к вертикальному столбу. Высокий коэффициент усиления в таких антеннах достигается за счет малой ширины диаграммы направленности (главного лепестка). Внешние антенны применяются, как правило, для связи двух беспроводных сетей, находящихся на большом расстоянии друг от друга. Они устанавливаются в зоне прямой видимости и важно, чтобы каждая из них находилась в зоне главного лепестка диаграммы направленности другой антенны.

Спутниковые антенны являются наружными и в основном используются для обеспечения спутниковой связи, телевидения и спутникового интернета. Обеспечивают мобильную по всем континентам связь в зоне прямой видимости с антеннами, расположенными на орбитальных спутниках.

Антенны для внутреннего использования меньше по размерам и обладают более низким коэффициентом усиления. Такие антенны либо устанавливаются на столе, либо крепятся к стене или непосредственно к точке доступа.

К самой точке доступа антенны могут подсоединяться либо напрямую, либо с помощью кабеля. При этом для подсоединения антенны или кабеля к точке доступа предназначен специальный миниатюрный SMA-разъем. На точках доступа применяется разъем типа Male, а на самой антенне или антенном кабеле - разъем типа Female.

Для соединения антенны наружного применения с кабелем могут использоваться и другие типы высокочастотных разъемов - чаще всего это разъем N-типа (рис.5.7).

Рис.5.7. Разъемы N-типа.

Штыревая антенна. Все точки доступа стандарта 802.11b/g комплектуются штатными миниатюрными штыревыми антеннами, которые могут быть как съемными, так и стационарными. Штыревая антенна представляет собой самый простой вариант антенны. Ее часто называют также несимметричным вибратором. Если штыревую антенну расположить вертикально, то в горизонтальной плоскости она будет излучать энергию во все стороны равномерно, поэтому в горизонтальной плоскости такая антенна является всенаправленной и, естественно, говорить о преимущественном излучении в определенном направлении не приходится. В то же время в вертикальной плоскости такая антенна излучает неравномерно. В частности, излучение вдоль оси антенны вообще отсутствует. Именно поэтому даже в случае простейшей штыревой антенны можно выделить направления, соответствующие максимальному усилению. Для штыревых антенн (рис.5.8.) максимальное усиление достигается в плоскости, перпендикулярной антенне и проходящей через ее середину.

Рис.5.8. Штыревая антенна.

Если разобрать штатную штыревую антенну, то в большинстве случаев окажется, что длина ее активной части составляет всего 31 мм. Естественно, такая длина выбрана неслучайно. Дело в том, что частотный диапазон для Wi-Fi-устройств составляет от 2400 до 2473 МГц. Соответственно длина волны излучения варьируется от 12.12 до 12.49 см, а четверть длины волны приблизительно равна 31 мм. То есть в большинстве случаев длина штыревой антенны выбирается равной четверти длины волны излучения. Отметим, что в силу изотропного характера излучения штыревой антенны, в горизонтальной плоскости точку доступа с такой антенной оптимально устанавливать в центре офиса или квартиры, чтобы максимально охватить беспроводной сетью все пространство квартиры или офиса.

Штыревые антенны хотя и являются наиболее распространенными для Wi-Fi-устройств, но не предоставляют всего разнообразия возможных конструкций Wi-Fi-антенн. В Интернете можно найти не один специализированный ресурс, посвященный самодельным антеннам для частотного диапазона 2,4 ГГц. Это и разнообразные варианты антенн, выполненных из консервных банок, и антенны типа симметричного полуволнового вибратора с рефлектором, и антенны с биквадратным четвертьволновым излучателем и рефлектором, и спиральные антенны, и разнообразные Yagi-антенны и пр. Конечно же, описание всех имеющихся антенн потребовало бы целой книги. Рассмотрим те Wi-Fi-антенны, которые можно купить в российских магазинах.

TP-Link TL-ANT2406A (рис.5.9). Миниатюрная направленная антенна TL-ANT2406A компании TP-Link предназначена для внутреннего использования. Антенна имеет удобную подставку, допускающую крепление на стене, установку на столе или крепление к панели корпуса ПК с помощью магнитов, расположенных в ее днище.

Рис.5.9. Антенна TP-Link TL-ANT2406A

Для соединения антенны с точкой доступа используется 50-омный кабель длиной 1 м, снабженный разъемом SMA. Согласно технической документации, антенна TL-ANT2406A имеет коэффициент усиления 6 dBi. Производитель классифицирует данную антенну как вариант Yagi-антенны. Yagi-антенна, или антенна Яги, или антенна Уда-Яги (название образовано от имен двух японских изобретателей - Hidetsugu Yagi и Shintaro Uda), или антенна типа «волновой канал», - это направленная антенна в виде ряда параллельных линейных электрических вибраторов длиной, близкой к половине длины волны излучения (приема), расположенных в одной плоскости вдоль линии, совпадающей с направлением максимального излучения (приема). И если пользоваться именно этим определением Yagi-антенны, то конструкция TL-ANT2406A никак ему не соответствует. Вообще, классифицировать антенну TL-ANT2406A оказалось довольно сложно. В качестве излучающего (приемного) элемента в ней используется прямоугольная металлическая плоскость размером 48x52 мм (рис.5.10)), в которой сделаны небольшие надрезы, а сама излучающая плоскость находится на расстоянии 4 мм от прямоугольного экрана-рефлектора, размеры которого совпадают с размерами излучателя. Центральная жила коаксиального кабеля соединена с излучателем, а оплетка кабеля - с экраном.

Рис. 5.10. Схема антенны TL-ANT2406A

TP-Link TL-ANT2409 (рис.5.11)A. Миниатюрная направленная антенна TP-Link TL-ANT2409A, как следует из надписи на упаковке, предназначена для наружного использования, что показалось нам довольно странным, ведь по своим габаритам она больше подходит для внутреннего применения. Да и заявленный коэффициент усиления, равный 9 dBi, соответствует скорее антеннам внутреннего использования.

Рис.5.11. Антенна TP-Link TL-ANT2409A

Корпус антенны предусматривает ее монтаж на стене или на горизонтальном столбе, для чего в комплекте имеются специальные монтажные скобы и хомуты. Для соединения антенны с точкой доступа используется 50-омный кабель, снабженный разъемом SMA. Длина этого кабеля всего 1 м, что для наружных антенн опять-таки может оказаться недостаточным. Производитель классифицирует эту антенну как разновидность Yagi-антенн. Вообще, создается впечатление, что любую направленную антенну компания TP-Link считает вариантом Yagi-антенны. Впрочем, производителю виднее. Внутренняя конструкция антенны довольно простая. Над квадратным заземленным экраном размером 90x90 мм на высоте 7 мм расположен излучающий элемент в виде металлического прямоугольника размером 44x54 мм. Соединение излучающего элемента с коаксиальным кабелем реализовано с обратной стороны экрана, причем для согласования фидера с антенной используется металлизированная полоска определенной конфигурации. Схема антенны TL-ANT2409A показана на рис. 5.12.

Рис. 5.12. Схема антенны TL-ANT2409A

D-Link DWL-R60AТ (рис.5.13). Направленная антенна D-Link DWL-R60AT предназначена для внутреннего использования. Она относится к разряду миниатюрных панельных антенн - ее габариты составляют всего 80x85x12,8 мм. Антенна предусматривает непосредственное (без использования кабеля) подключение к точке доступа с помощью разъема SMA.

Рис.5.13. Антенна D-Link DWL-R60AT.

Согласно технической документации, антенна D-Link DWL-R60AT имеет коэффициент усиления 6 dBi. Кроме того, известно, что ширина диаграммы направленности в вертикальной плоскости составляет у нее 90°, а ширина диаграммы направленности в горизонтальной плоскости - 60°. Внутренне устройство этой антенны достаточно простое и мало чем отличается от устройства антенны TP-Link TL-ANT2409A. Над металлическим заземленным квадратным экраном размером 70x70 мм на высоте 4,5 мм расположен излучающий элемент, представляющий собой металлический прямоугольник размером 49x52 мм. Подводка фидера к излучающим элементам производится с обратной стороны экрана.

D-Link ANT24-1800 (рис.5.14). Панельная антенна D-Link ANT24-1800предназначена для использования вне помещений. Основное ее назначение - обеспечить беспроводное соединение между двумя удаленными друг от

друга стационарными
точками доступа. Согласно паспортным данным, эта антенна обеспечивает связь на расстоянии до 8 км при скорости соединения 1 Мбит/с и на расстоянии до 3 км при скорости соединения 11 Мбит/с.

 

Рис.5.14. Антенна D-Link ANT24-1800

Ее размеры составляют 360x360x16 мм. В комплекте с антенной поставляются монтажные скобы, которые позволяют закрепить ее на вертикальной стене или на столбе (рис. 5.15).

Рис. 5.15.Монтажные скобы для антенны D-Link ANT24-1800

Корпус антенны сделан водонепроницаемым - все швы обработаны герметиком. Согласно паспортным данным, коэффициент усиления данной антенны составляет 18 dBi. Столь высокое значение достигается за счет узкой диаграммы направленности антенны. Ее ширина в вертикальной и горизонтальной плоскостях составляет всего 15°. Для подключения кабеля к антенне используется разъем N-типа («мама»). Кроме того, в комплекте прилагается кабель длиной 0,5 м с разъемами N-типа и SMA. Естественно, что длины этого кабеля недостаточно для подключения антенны к точке доступа, поэтому в комплекте также входит переходник с разъемами N-типа («мама» - «папа») для подсоединения кабеля-удлинителя, который в комплекте не поставляется (рис. 5.16.).

 

Рис. 5.16. Переходник с разъемами N-типа («мама» - «папа»).

Итак, после рассмотрения нескольких моделей антенн можно констатировать, что все направленные антенны устроены примерно одинаково и очень просто. Если антенна относится к панельному типу, то ее конструкция включает экран и излучатель, выполненный в форме прямоугольника и установленный на некотором расстоянии от экрана. Различия между антеннами заключаются лишь в размерах излучателя и экрана, а также в расстоянии между ними. В антеннах, предназначенных для использования внутри помещений, имеется один излучатель, а антенны, предназначенные для применения вне помещений, могут содержать несколько излучателей.


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.014 сек.)