|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Архитектура и классификация ИНС
С каждым нейроном связывается набор входящих связей, по которым к данному элементу поступают сигналы от других элементов сети, и набор исходящих связей, по которым сигналы данного элемента передаются другим нейронам. Некоторые нейроны предназначены для получения сигналов из внешней среды (входные элементы), а некоторые – для вывода во внешнюю среду результатов вычислений (выходные элементы). В 1958 г. Фрэнк Розенблатт предложил следующую модель нейронной сети – персептрона. Персептрон Розенблатта (рис. 2.4) состоит из k нейронов, имеет d входов, k выходов и только один слой настраиваемых весов wij.
Рисунок 2.4 – Персептрон Розенблатта.
Входные нейроны обычно предназначены для распределения вводимых сигналов между другими нейронами сети, поэтому для них требуется, чтобы исходящий от элемента сигнал был таким же, как и входящий. В отличие от других нейронов сети, входные имеют только по одному входу. Иными словами, каждый входной элемент может получать сигнал от одного соответствующего ему датчика. Поскольку входные элементы предназначены исключительно для того, чтобы распределять сигналы, получаемые из внешней среды, многие исследователи вообще не считают входные элементы частью нейронной сети. Персептрон способен решать линейные задачи. Число входов сети определяет размерность пространства, из которого выбираются входные данные: для двух признаков пространство оказывается двумерным, для трех – трехмерным, а для d признаков – d-мерным. Если прямая или гиперплоскость в пространстве входных данных может разделить все образцы на соответствующие им классы, то проблема является линейной, в противном случае – нелинейной. На рисунке 2.5 показаны множества точек на плоскости, причём в случае а) граница линейная, в случае – б) нелинейная. а) б) Рисунок 2.5 – Геометрическое представление линейной (а) и нелинейной (б) задач.
Для решения нелинейных проблем предложены модели многослойных персептронов (MLP), способные строить ломаную границу между распознаваемыми образами. В многослойных сетях каждый нейрон может посылать выходной сигнал только в следующий слой и принимать входные сигналы только с предыдущего слоя, как показано на рисунке 2.6. Слои нейронов, расположенные между входным и выходным называются скрытыми, так как не получают и не передают данные непосредственно из внешней среды. Такая сеть позволяет выделять глобальные свойства данных за счет наличия дополнительных синаптических связей и повышения уровня взаимодействия нейронов.
Рисунок 2.6 – Схема многослойного персептрона.
Определение числа скрытых слоев и числа нейронов в каждом слое для конкретной задачи является неформальной проблемой, при решении которой можно использовать эвристическое правило: число нейронов в следующем слое в два раза меньше, чем в предыдущем В настоящее время кроме многослойного персептрона существует множество способов задания структур нейронных сетей. Все виды нейронных сетей можно условно разделить на сети прямого распространения и сети с обратными связями. Как следует из названия, в сетях первого типа сигналы от нейрона к нейрону распространяются в четко заданном направлении – от входов сети к ее выходам. В сетях второго типа выходные значения любого нейрона сети могут передаваться к его же входам. Это позволяет нейронной сети моделировать более сложные процессы, например временные, но делает выходы подобной сети нестабильными, зависящими от состояния сети на предыдущем цикле. На рисунке 2.7. представлена классификация наиболее распространенных типов нейронных сетей.
Рисунок 2.7 – Классификация распространённых видов ИНС.
Тема 3. Сети типа персептрон
Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.006 сек.) |