АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Обьектно-ориентированое программирование

Читайте также:
  1. Всеобщее программирование судьбы
  2. ГЛАВА 1 СОЦИАЛЬНОЕ ПРОГРАММИРОВАНИЕ
  3. Модульное программирование
  4. НЕЙРО-ЛИНГВИСТИЧЕСКОЕ ПРОГРАММИРОВАНИЕ -НЛП (NEURO-LINGUISTIC
  5. Нейролингвистическое программирование (НЛП)
  6. Параметрическое программирование
  7. Перепрограммирование подсознания.
  8. Пример для спецкурса «Программирование на платформе V7.7» - создание заказа на издательско-полиграфические услуги, формирование на его основе счета, отчетов.
  9. Программирование
  10. ПРОГРАММИРОВАНИЕ
  11. Программирование арифметических операций

 

Прототипом объектно-ориентированного программирования послужил ряд средств, входящих в состав языка SIMULA-67. Но в самостоятельный стиль оно оформилось с появлением языка SMALLTALK, разработанного А. Кеем в 1972 году и первоначально предназначенного для реализации функций машинной графики.


В основе объектно-ориентированного стиля программирования лежит понятие объекта, а суть его выражается формулой: «объект = данные + процедуры». Каждый объект интегрирует в себе некоторую структуру данных и доступные только ему процедуры обработки этих данных, называемые методами. Объединение данных и процедур в одном объекте называется инкапсуляцией и присуще объектно-ориентированному программированию.


Для описания объектов служат классы. Класс определяет свойства и методы объекта, принадлежащего этому классу. Соответственно, любой объект можно определить как экземпляр класса.


Программирование рассматриваемого стиля заключается в выборе имеющихся или создании новых объектов и организации взаимодействия между ними. При создании новых объектов свойства объектов могут добавляться или наследоваться от объектов-предков. В процессе работы с объектами допускается полиморфизм — возможность использования методов с одинаковыми именами для обработки данных разных типов.


К наиболее современным объектно-ориентированным языкам программирования относятся C++ и Java.


Язык C++ был разработан в начале 80-х годов Б. Страуструпом, сотрудником лаборатории Bell корпорации AT&T. Им была создана компактная компилирующая система, в которой за основу был взят язык С, дополненный элементами языков BCPL,Simula-67 и Algol-68. К июлю 1983 года появился язык С с классами, а чуть позднее — C++. К 1990 году была выпущена третья версия языка C++, принятая комитетом ANSI в качестве исходного материала для его стандартизации.


В 1990 году сотрудник корпорации Sun Д. Гослинг на основе расширения C++ разработал объектно-ориентированный язык Oak, основным достоинством которого было обеспечение сетевого взаимодействия различных по типу устройств. Новая интегрируемая в Internet версия языка, получила название Java. Первый броузер, который поддерживал язык Java, разработан программистом корпорации Sun П. Нафтоном и получил название HotJava. С января 1995 года Java получает распространение в Internet.


Согласно официальному определению авторов, Java является простым объектно-ориентированным и архитектурно-нейтральным языком интерпретирующего типа, обеспечивающим надежность, безопасность и переносимость, обладающим высокой производительностью в сочетании с многопоточностью и динамичностью.


Принципиальной разницей между Java и C++ является то, что первый из них является интерпретируемым, а второй — компилируемым. Синтаксис языков практически полностью совпадает.


С точки зрения возможностей собственно объектно-ориентированных средств язык Java обладает рядом преимуществ перед языком C++. Так, язык Java демонстрирует более гибкую и мощную систему инкапсуляции информации. Механизм наследования, реализованный в Java, обязывает к более строгому подходу к программированию, что улучшает надежность и понимаемость кода. Язык же C++ обладает сложной, неадекватной и трудной для понимания системой наследования. Возможности динамического связывания объектов одинаково хорошо представлены в обоих языках, однако, синтаксическая избыточность C++ заставляет и здесь отдать предпочтение языку Java.


В силу своей конструктивности идеи объектно-ориентированного программирования используются во многих универсальных процедурных языках. Так, например, в состав интегрированной системы программирования на языке PASCAL (корпорации BorlandInternational) версии 5.5 входит специальная библиотека объектно-ориентированного программирования TurboVision.


В последнее время многие программы, в особенности объектно-ориентированные, реализуются как системы визуального программирования. Отличительной особенностью таких систем является мощная среда разработки программ из готовых «строительных блоков», позволяющая создать интерфейсную часть программного продукта в диалоговом режиме, практически без кодирования программных операций. К числу объектно-ориентированных систем визуального программирования относятся: VisualBasic, Delphi, C++ Builder и Visual C++.


 

Структу́рное программи́рование — методология разработки программного обеспечения, в основе которой лежит представление программы в виде иерархической структуры блоков. Предложена в 70-х годах XX века Э. Дейкстрой, разработана и дополнена Н. Виртом.

В соответствии с данной методологией

1. Любая программа представляет собой структуру, построенную из трёх типов базовых конструкций:

· последовательное исполнение — однократное выполнение операций в том порядке, в котором они записаны в тексте программы;

· ветвление — однократное выполнение одной из двух или более операций, в зависимости от выполнения некоторого заданного условия;

· цикл — многократное исполнение одной и той же операции до тех пор, пока выполняется некоторое заданное условие (условие продолжения цикла).

В программе базовые конструкции могут быть вложены друг в друга произвольным образом, но никаких других средств управления последовательностью выполнения операций не предусматривается.

2. Повторяющиеся фрагменты программы (либо не повторяющиеся, но представляющие собой логически целостные вычислительные блоки) могут оформляться в виде т. н. подпрограмм (процедур или функций). В этом случае в тексте основной программы, вместо помещённого в подпрограмму фрагмента, вставляется инструкция вызова подпрограммы. При выполнении такой инструкции выполняется вызванная подпрограмма, после чего исполнение программы продолжается с инструкции, следующей за командой вызова подпрограммы.

3. Разработка программы ведётся пошагово, методом «сверху вниз».

Сначала пишется текст основной программы, в котором, вместо каждого связного логического фрагмента текста, вставляется вызов подпрограммы, которая будет выполнять этот фрагмент. Вместо настоящих, работающих подпрограмм, в программу вставляются «заглушки», которые ничего не делают. Полученная программа проверяется и отлаживается. После того, как программист убедится, что подпрограммы вызываются в правильной последовательности (то есть общая структура программы верна), подпрограммы-заглушки последовательно заменяются на реально работающие, причём разработка каждой подпрограммы ведётся тем же методом, что и основной программы. Разработка заканчивается тогда, когда не останется ни одной «затычки», которая не была бы удалена. Такая последовательность гарантирует, что на каждом этапе разработки программист одновременно имеет дело с обозримым и понятным ему множеством фрагментов, и может быть уверен, что общая структура всех более высоких уровней программы верна. При сопровождении и внесении изменений в программу выясняется, в какие именно процедуры нужно внести изменения, и они вносятся, не затрагивая части программы, непосредственно не связанные с ними. Это позволяет гарантировать, что при внесении изменений и исправлении ошибок не выйдет из строя какая-то часть программы, находящаяся в данный момент вне зоны внимания программиста.

Теорема о структурном программировании:

Основная статья: Теорема Бома-Якопини

Любую схему алгоритма можно представить в виде композиции вложенных блоков begin и end, условных операторов if, then, else, циклов с предусловием (while) и, может быть, дополнительных логических переменных (флагов).
Эта теорема была сформулирована итальянскими математиками К. Бомом и Дж. Якопини в 1966 году и говорит нам о том, как можно избежать использования оператора перехода goto.

История[править | править вики-текст]

Методология структурного программирования появилась как следствие возрастания сложности решаемых на компьютерах задач, и соответственного усложнения программного обеспечения. В 70-е годы XX века объёмы и сложность программ достигли такого уровня, что «интуитивная» (неструктурированная, или «рефлекторная») разработка программ, которая была нормой в более раннее время, перестала удовлетворять потребностям практики. Программы становились слишком сложными, чтобы их можно было нормально сопровождать, поэтому потребовалась какая-то систематизация процесса разработки и структуры программ.

Наиболее сильной критике со стороны разработчиков структурного подхода к программированию подвергся оператор GOTO (оператор безусловного перехода), имевшийся тогда почти во всех языках программирования. Неправильное и необдуманное использование произвольных переходов в тексте программы приводит к получению запутанных, плохо структурированных программ (т. н. спагетти-кода), по тексту которых практически невозможно понять порядок исполнения и взаимозависимость фрагментов.

Следование принципам структурного программирования сделало тексты программ, даже довольно крупных, нормально читаемыми. Серьёзно облегчилось понимание программ, появилась возможность разработки программ в нормальном промышленном режиме, когда программу может без особых затруднений понять не только её автор, но и другие программисты. Это позволило разрабатывать достаточно крупные для того времени программные комплексы силами коллективов разработчиков, и сопровождать эти комплексы в течение многих лет, даже в условиях неизбежных изменений в составе персонала.

Методология структурной разработки программного обеспечения была признана «самой сильной формализацией 70-х годов». После этого слово «структурный» стало модным в отрасли, и его начали использовать везде, где надо и где не надо. Появились работы по «структурному проектированию», «структурному тестированию», «структурному дизайну» и так далее. В общем, произошло примерно то же самое, что происходило в 90-х годах и происходит в настоящее время с терминами «объектный», «объектно-ориентированный» и «электронный».

Перечислим некоторые достоинства структурного программирования:

1. Структурное программирование позволяет значительно сократить число вариантов построения программы по одной и той же спецификации, что значительно снижает сложность программы и, что ещё важнее, облегчает понимание её другими разработчиками.

2. В структурированных программах логически связанные операторы находятся визуально ближе, а слабо связанные — дальше, что позволяет обходиться без блок-схем и других графических форм изображения алгоритмов (по сути, сама программа является собственной блок-схемой).

3. Сильно упрощается процесс тестирования и отладки структурированных программ.

 


1 | 2 | 3 | 4 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.005 сек.)