|
|||||||||||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Дифференциальные уравнения конвективного теплообменаКОНВЕКТИВНЫЙ ТЕПЛООБМЕН
Основные понятия и определения Передача теплоты конвекцией осуществляется перемещением в пространстве неравномерно нагретых объемов жидкости или газов. В дальнейшем изложении обе среды объединены одним наименованием — жидкость. Обычно при инженерных расчетах определяется конвективный теплообмен между жидкостью и твердой стенкой, называемый теплоотдачей. Согласно закону Ньютона—Рихмана, тепловой поток Q от стенки к жидкости пропорционален поверхности теплообмена и разности температур между температурой твердой стенки tc и температурой жидкости tж:
Главная трудность расчета заключается в определении коэффициента теплоотдачи α, зависящего от ряда факторов: физических свойств омывающей поверхность жидкости (плотности, вязкости, теплоемкости, теплопроводности), формы и размеров поверхности, природы возникновения движения среды, скорости движения. По природе возникновения различают два вида движения — свободное и вынужденное. Свободное движение происходит вследствие разности плотностей нагретых и холодных частиц жидкости, находящейся в поле действия сил тяжести; оно называется также естественной конвекцией и зависит от рода жидкости, разности температур, объема пространства, в котором протекает процесс. Вынужденное движение возникает под действием посторонних побудителей (насоса, вентилятора, ветра). В общем случае наряду с вынужденным движением одновременно может развиваться и свободное. Относительное влияние последнего тем больше, чем больше разность температур в отдельных точках жидкости и чем меньше скорость вынужденного движения. Движение жидкости может быть ламинарным или турбулентным. При ламинарном режиме частицы жидкости движутся послойно, не перемешиваясь. Турбулентный режим характеризуется непрерывным перемешиванием всех слоев жидкости. Переход ламинарного режима в турбулентный определяется значением безразмерного комплекса, называемого числом Рейнольдса:
где w – скорость движения жидкости; ν — коэффициент кинематической вязкости1; l — характерный размер канала или обтекаемой стенки. При любом режиме движения частицы жидкости, непосредственно прилегающие к твердой поверхности, как бы прилипают к ней. В результате вблизи обтекаемой поверхности вследствие действия сил вязкости образуется тонкий слой заторможенной жидкости, в пределах которого скорость изменяется от нуля на поверхности тела до скорости невозмущенного потока (вдали от тела). Этот слой заторможенной жидкости получил название гидродинамического пограничного слоя. Толщина этого слоя возрастает вдоль по потоку, так как по мере движения влияние вязкости распространяется все больше на невозмущенный поток. Однако и в случае турбулентного пограничного слоя непосредственно у стенки имеется очень тонкий слой жидкости, движение в котором носит ламинарный характер. Этот слой называется вязким, или ламинарным, подслоем. Аналогично понятию гидродинамического слоя существует понятие теплового пограничного слоя — прилегающей к твердой поверхности области, в которой температура жидкости изменяется от температуры стенок tс до температуры жидкости вдали от тела tж. В общем случае толщины гидродинамического и теплового пограничных слоев пропорциональны, а для газов практически равны. Интенсивность переноса теплоты зависит от режима движения жидкости в пограничном слое. При турбулентном пограничном слое перенос теплоты в направлении стенки обусловлен турбулентным перемешиванием жидкости. Однако непосредственно у стенки, в ламинарном подслое теплота будет переноситься теплопроводностью. При ламинарном пограничном слое теплота в направлении стенки переносится только теплопроводностью.
Дифференциальные уравнения конвективного теплообмена На основании рассмотренного выше представления о процессах переноса теплоты при движении жидкости вдоль твердой поверхности получим уравнение, описывающее процесс теплоотдачи на границах тела. Так как у поверхности твердого тела имеется слой неподвижной жидкости, то для этого слоя можно использовать закон Фурье. Принимая, что ось Оу направлена перпендикулярно поверхности, запишем
Однако
Приравнивая эти уравнения получим
Уравнение (10.2) называют дифференциальным уравнением теплоотдачи. Если в дифференциальное уравнение теплопроводности подставить конвективное изменение температуры, обусловленное течением жидкости:
где wx, wy и wz – проекции скорости жидкости на координатные оси, то можно записать
Иными словами говоря, если через изучаемый нами элементарный объём движется со скоростью w некое температурное поле, то дифференциальное уравнение теплопроводности следует накладывать на это поле. Для строго описания процессов конвективного теплообмена к дифференциальному уравнению (10.3) следует добавить уравнение (Навье-Стокса) движения вязкой жидкости, вытекающее из второго закона Ньютона, уравнение сплошности и неразрывности жидкости и учесть зависимость плотности жидкости от температуры. Такая система уравнений описывает большой класс явлений — процессы конвективного теплообмена между жидкостью и твердой стенкой. Эти уравнения должны быть дополнены условиями однозначности, характеризующими конкретные особенности той или иной рассматриваемой задачи.
Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.004 сек.) |