|
|||||||
|
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Основы теории подобияВвиду сложности математического описания процессов конвективного теплообмена аналитическое решение дифференциальных уравнений с условиями однозначности оказывается возможным только в результате дополнительных упрощений, которые в значительной мере снижают практическую ценность полученных результатов. Поэтому многие зависимости для конкретных задач конвективного теплообмена получают экспериментальным путем. Распространение этих эмпирических зависимостей на другие конкретные явления может привести к грубым ошибкам. Объединение математических методов с экспериментом с помощью теории подобия позволяет распространить результаты единичного опыта на целую группу явлений. Понятие подобия, как известно, впервые введено в геометрии. Геометрически подобными называются такие фигуры, у которых сходственные (одноименные) стороны пропорциональны, а сходственные углы равны. Понятие подобия распространяется на любое физическое явление. Физические явления считаются подобными, если они относятся к одному и тому же классу, протекают в геометрически подобных системах, и подобны все однородные физические величины, характеризующие эти явления. Однородными называются такие величины, которые имеют один и тот же физический смысл и одинаковую размерность. Таким образом, для подобных физических явлений в сходственных точках и в сходственные моменты времени любая величина φ′ первого явления пропорциональна величине φ′′ второго явления, т. е. φ′=cφ·φ′′. При этом каждая физическая величина φ имеет свой множитель преобразования cφ′ численно отличный от других. Аналогично геометрическому подобию уравнения, описывающие подобные физические явления, после приведения их к безразмерному виду становятся тождественно одинаковыми. При этом в сходственных точках все одноименные безразмерные величины, в том числе и безразмерные параметры, будут равны. Приведем к безразмерному виду дифференциальное уравнение теплоотдачи. Если ввести обозначение ϑ=t—tc, то (10.2) можно записать в форме
Выберем какой-либо характерный геометрический размер l0 и избыточную температуру стенки ϑc=tс—tж в качестве величин приведения. Обозначим безразмерные величины
Окончательно
Помимо безразмерной температуры θ и координаты Y, в уравнение входит безразмерный комплекс
Критерии, составленные из величин, определяющих характер процесса, но не включающие искомых величин, называются определяющими, а критерии, включающие искомые величины, - неопределяющими. Так, при расчёте конвективного теплообмена критерий Nu не является определяющим, так как в него входит искомая величина α. Критерии же Re и Pr в этих же расчётах – определяющие.
Поиск по сайту: |
||||||
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.494 сек.) |