|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Аксиоматика теории вероятностейРассмотрим некоторый стохастический эксперимент. Пусть — пространство элементарных событий. Предположим, что в выделена система подмножеств , являющаяся –алгеброй. Это означает, что: S.1) если , то ; S.2) из того, что , следует, что . Множества из называют случайными событиями. Предположим, что каждому случайному событию (множеству из ) поставлено в соответствие число (назовем его вероятностью случайного события ), обладающее следующими свойствами: P.1) для каждого ; P.2) ; P.3) если , — последовательность случайных событий такая, что , то . Утверждения S.1, S.2, P.1, P.2, P.3 составляют систему аксиом теории вероятностей. В таком виде аксиоматика теории вероятностей была сформулирована А.Н. Колмогоровым.
2. Определение. Пусть — вероятностное пространство. Набор случайных событий , , , образует полную группу событий, если выполнены соотношения 1) , 2) . Теорема. Формула полной вероятности. Пусть — вероятностное пространство. , , — полная группа событий и , , то для любого случайного события имеет место равенство . Теорема. Формулы Байеса. Пусть — вероятностное пространство. События , , образуют полную группу событий, причем , для каждого . Тогда для любого случайного события такого, что , выполнены равенства . 3. Определение Пусть — вероятностное пространство. Всякая действительная функция на такая, что для каждого действительного , называется случайной величиной. Определение Функция называется функцией распределения случайной величины . Определение Величины называются независимыми, если для любых действительных события независимы, т.е. . 4. Определение. Пусть — вероятностное пространство. Случайная величина называется дискретной случайной величиной, если она принимает конечное или счетное число значений. Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.) |