АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Напряжённость поля радиоволны, распространяющейся вдоль земной поверхности

Читайте также:
  1. I. Расчет режимов резания на фрезерование поверхности шатуна и его крышки.
  2. Архангельск — Град Земной и Град Небесный
  3. Вентилируемые площадки подземной фильтрации
  4. Влад накинул шарф мне на правое плечо и его концы красиво упали вдоль моего тела.
  5. Влияние сферичности отражающей поверхности
  6. Влияние шероховатости отражающей поверхности
  7. Все неровности земной поверхности это-
  8. Выбор сечение проводников по допустимой потере напряжения по условиям постоянства сечения вдоль линии
  9. Выбор типа отопительных приборов и определение их поверхности нагрева
  10. Выбор типа поверхности теплообменника,
  11. Выполнить сканирование по всей плоской опорной поверхности подпятника с шагом не более 6 мм.
  12. ГЛАЗА ДВИГАЮТСЯ ВДОЛЬ СТРОЧКИ ЛИСТА

Пусть в точке передачи на поверхности расположен вертикальный диполь. При распространении радиоволны вдоль неидеально проводящей поверхности часть энергии проникает в толщу Земли и там теряется. Уменьшение напряженности поля по сравнению с распространением над идеально проводящей поверхностью (9.3) учитывается введением множителя ослабления W, являющегося в общем случае комплексной функцией W = W(r, e, m, s, l), причём ½W½£ 1. Таким образом, амплитуда поля радиоволны над полупроводящей поверхностью определяется выражением

, (10.1)

получившим название «формула Шулейкина - Ван-дер-Поля».

Значения W, получаемые путём решения уравнений электродинамики, обычно представляют в виде графиков зависимости ½W(r)½ (рис. 10.1), где параметр

(10.2)

называется ­численным расстоянием. Для аналитического представления зависимости используют аппроксимирующую формулу

. (10.3)

Согласно (10.3), при небольших r |W|» 1, при r >> 1 . Тогда из (10.1) следует, что при малых длинах трасс E ~ ; а при больших значениях r |W| ~ , следовательно, E ~ . Согласно (10.2), увеличение l, s, e' уменьшает r, что ведёт к росту |W|, а значит, и поля в точке приёма.

Заметим, что приведенные выше зависимости |W| справедливы лишь до некоторого rmax, зависящего, в основном, от длины волны l (табл. 10.1).

10.1. "Взлетная" и "посадочная" площадки

Покажем, что в результате поглощения радиоволн земной толщей при прохождении трассы вдоль земной поверхности энергетический вклад первой зо­ны Френеля в принимаемый сигнал уменьшается. Существенный участок для распространения радиоволн вдоль поверхности идеально прово­дящей земли имеет форму эллипса с фокусами в точке излучения A и в точке приема B. В случае реальной земли электромагнитное поле будет убывать вследствие просачивания энергии в землю. Рассмотрим элементарные площадки dS1 и dS2 в плоскости S, перпендикулярной к поверхности (рис. 10.2). Сравним вклады в принимаемое поле вторичных источников на этих площадках. Согласно принци­пу Гюйгенса–Френеля, чем ближе площадка к прямой AB, тем больше ее вклад в поле в точке B. Но, по мере приближения к полупроводящей поверхности, возрастает поглощение ею радиоволн. Следовательно, вклад в принимаемое поле вторичных источников более высоко расположенных участков плоскости S может стать более существенным, т. е. вклад dS2 может быть больше вклада участка dS1. Это можно трактовать как отклонение траектории распространения волны от прямолинейной – её "выпячивание". При этом существенно повышается роль участков поверхности, непосредственно примыкающих к точкам приема и передачи, по сравнению со средними участками трассы. Ведь в формировании сигнала зонами Френеля высокого порядка участвуют как прямые, так и отраженные от поверхности под большим углом лучи, а последние создаются вторичными источниками, расположенными вблизи точек передачи и приема. Отсюда - обоснованность предложенных Л. И. Мандельштаммом названий этих областей: "взлетная" и "посадочная" площадки.


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.)