|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Question listLABORATORY WORK #1.5-1.6 The purpose of this work is to study: - Nyquist diagrams - Gain frequency characteristics - Phase frequency characteristics - Bandwidth function.
Task 1 Your task is to obtain Nyquist diagram using the following Matlab script: H = tf([100],[0.1 1.1 1]) nyquist(H) Using this example your task is to obtain Nyquist diagrams for the following transfer functions: - - - Each student has to choose its values for within the interval (0;+10).
Task 2 Using the following Matlab scripts define gain frequency characteristics of the 1st and 2nd order links: 1st order links: w=0:0.05:3; T=[1 2 3 4]; for k=1:4 Gnum=[0 1]; Gden=[T(k) 1]; Gjomega=freqs(Gnum,Gden,w); Gmag=abs(Gjomega); plot(w, Gmag); title('Gain Frequency Response of G(s)') xlabel('Omega') ylabel('G(j*omega)') grid on hold on end hold off
Underdamped links: w=0:0.05:3; z=[0.25 0.5 0.707 0.9]; for k=1:4 Gnum=[0 0 1]; Gden=[1 2*z(k) 1]; Gjomega=freqs(Gnum, Gden, w); Gmag=abs(Gjomega); plot(w, Gmag); title('Gain Frequency Response of G(s)') xlabel('Omega') ylabel('G(j*omega)') grid on hold on end hold off
Overdamped links: w=0:0.05:3; z=[1 1.25 1.5 1.75 2]; for k=1:4 Gnum=[0 0 1]; Gden=[1 2*z(k) 1]; Gjomega=freqs(Gnum, Gden, w); Gmag=abs(Gjomega); plot(w, Gmag); title('Gain Frequency Response of G(s)') xlabel('Omega') ylabel('G(j*omega)') grid on hold on end hold off Using these examples your task is to obtain Matlab scripts and gain frequency characteristics for the following transfer functions: - - - Each student has to choose its values for within the interval (0;+10). Task 3 Using the following Matlab scripts define phase frequency characteristics of the 1st and 2nd order links: 1st order links: Matlab script: w=0:0.1:3; t=[1 2 3 4]; for k=1:4 x=w*t(k); phi=-atan(x) y=phi*180/pi; title('Phase Frequency Response') xlabel('Omega') ylabel('Phase angle') plot(w, y); grid on hold on end hold off Overdamped links: w=0:0.1:6; for k=1:4 t3=[2 3 4 5]; t4=[1 2 3 4]; x1=w*t3(k); x2=w*t4(k); phi=-atan(x1)-atan(x2) y=phi*180/pi; plot(w,y) title('Phase Frequency Response') xlabel('Omega') ylabel('Phase angle') grid on hold on end hold off Underdamped links:
Y = atan(X) returns the inverse tangent (arctangent) for each element of X. For real elements of X, atan(X) is in the range The atan function operates element-wise on arrays. The function's domains and ranges include complex values. All angles are in radians. Matlab script: x = -20:0.01:20; y=atan(x)*180/pi; plot(x,y) title('Arctangent Function') xlabel('X') ylabel('Angle (degrees)') grid on
The singular point is defined by the point where . So in order to construct a phase frequency characteristic it’s necessary to create Matlab scripts before and after the singular point:
Before the singular point: for w=0:0.1:1 t=1; zeta=0.9; a=(2*zeta*w*t)/(1-w.^2*t.^2); alpha=-atan(a) y=alpha*180/pi; a,alpha,y plot(w,y,'-bs') title('Phase Frequency Response, zeta=0.9') xlabel('Omega') ylabel('Phase angle') grid on hold on end hold off After the singular point: for w=1.1:0.2:6 t=1; zeta=0.9; a=(2*zeta*w*t)/(1-w.^2*t.^2); alpha=-atan(a) y=-alpha*180/pi; z=-y-180; plot(w,z,'-bs') title('Phase Frequency Response, zeta=0.9') xlabel('Omega') ylabel('Phase angle') grid on hold on end hold off
for w=0:0.1:1 t=1; zeta=0.1; a=(2*zeta*w*t)/(1-w.^2*t.^2); alpha=-atan(a) y=alpha*180/pi; a,alpha,y plot(w,y,'-rs') title('Phase Frequency Response, zeta=0.1') xlabel('Omega') ylabel('Phase angle') grid on hold on end hold off
for w=0:0.1:1 t=1; zeta=0.5; a=(2*zeta*w*t)/(1-w.^2*t.^2); alpha=-atan(a) y=alpha*180/pi; a,alpha,y plot(w,y,'-gs') title('Phase Frequency Response, zeta=0.5') xlabel('Omega') ylabel('Phase angle') grid on hold on end hold off
After the singular point: for w=1.1:0.2:6 t=1; zeta=0.9; a=(2*zeta*w*t)/(1-w.^2*t.^2); alpha=-atan(a) y=-alpha*180/pi; a,alpha,y plot(w,y,'-bs') title('Phase Frequency Response, zeta=0.9') xlabel('Omega') ylabel('Phase angle') grid on hold on end hold off
for w=1.1:0.2:6 t=1; zeta=0.1; a=(2*zeta*w*t)/(1-w.^2*t.^2); alpha=-atan(a) y=alpha*180/pi; a,alpha,y plot(w,y,'--rs') title('Phase Frequency Response, zeta=0.1') xlabel('Omega') ylabel('Phase angle') grid on hold on end hold off
for w=1.1:0.2:6 t=1; zeta=0.9; a=(2*zeta*w*t)/(1-w.^2*t.^2); alpha=-atan(a) y=-alpha*180/pi; z=-90+y; plot(w,z,'-bs') title('Phase Frequency Response, zeta=0.9') xlabel('Omega') ylabel('Phase angle') grid on hold on end hold off for w=1.1:0.2:6 t=1; zeta=0.9; a=(2*zeta*w*t)/(1-w.^2*t.^2); alpha=-atan(a) y=-alpha*180/pi; z=90+y; plot(w,z,'-bs') title('Phase Frequency Response, zeta=0.9') xlabel('Omega') ylabel('Phase angle') grid on hold on end hold off
Using these examples your task is to obtain Matlab scripts and phase frequency characteristics for the following transfer functions: - - - Each student has to choose its values for within the interval (0;+10).
Task 4 Define frequency bandwidth characteristic for the following transfer function: num=[0 0 1]; den=[1 1 1]; sys = tf(num,den) fb = bandwidth(sys)
Transfer function: ----------- s^2 + s + 1
fb = 1.2711
Using this example your task is to obtain Matlab scripts and define frequency bandwidth characteristics for the following transfer functions: - - - Each student has to choose its values for within the interval (0;+10).
Question list 1. Mass-Spring-Damper System 2. Block diagram models 3. Frequency Response Methods 4. The connection between the Laplace and Fourier transforms 5. The particular solution – the system forced movement component 6. Frequency characteristics of control systems 7. The rules to construct the Nyquist diagram 8. Frequency bandwidth characteristics of control systems 9. Gain-frequency characteristics of control systems 10. Phase-frequency characteristics of control systems 11. The notion of a link 12. Frequency characteristics of typical dynamic links - amplification links - the 1st order links - overdamped links - underdamped links Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.021 сек.) |