АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Question list

Читайте также:
  1. Answer the following questions.
  2. Answer the following questions.
  3. Answer the questions
  4. Answer the questions in the written form.
  5. Answer the questions to check your reading comprehension.
  6. Answer these questions.
  7. Answer these questions.
  8. Complete the conversation. What does Andrea say to Jason? For questions 1 - 5, mark the correct letter A - H on the answer sheet.
  9. DISCUSSION QUESTIONS
  10. Examination Questions in English Lexicology
  11. III. Answer the questions.
  12. In groups, discuss the following questions.

LABORATORY WORK #1.5-1.6

The purpose of this work is to study:

- Nyquist diagrams

- Gain frequency characteristics

- Phase frequency characteristics

- Bandwidth function.

 

Task 1

Your task is to obtain Nyquist diagram using the following Matlab script:

H = tf([100],[0.1 1.1 1])

nyquist(H)

Using this example your task is to obtain Nyquist diagrams for the following transfer functions:

-

-

-

Each student has to choose its values for within the interval (0;+10).

 

Task 2

Using the following Matlab scripts define gain frequency characteristics of the 1st and 2nd order links:

1st order links:

w=0:0.05:3;

T=[1 2 3 4];

for k=1:4

Gnum=[0 1]; Gden=[T(k) 1];

Gjomega=freqs(Gnum,Gden,w);

Gmag=abs(Gjomega);

plot(w, Gmag);

title('Gain Frequency Response of G(s)')

xlabel('Omega')

ylabel('G(j*omega)')

grid on

hold on

end

hold off

Underdamped links:

w=0:0.05:3;

z=[0.25 0.5 0.707 0.9];

for k=1:4

Gnum=[0 0 1]; Gden=[1 2*z(k) 1];

Gjomega=freqs(Gnum, Gden, w);

Gmag=abs(Gjomega);

plot(w, Gmag);

title('Gain Frequency Response of G(s)')

xlabel('Omega')

ylabel('G(j*omega)')

grid on

hold on

end

hold off

 

Overdamped links:

w=0:0.05:3;

z=[1 1.25 1.5 1.75 2];

for k=1:4

Gnum=[0 0 1]; Gden=[1 2*z(k) 1];

Gjomega=freqs(Gnum, Gden, w);

Gmag=abs(Gjomega);

plot(w, Gmag);

title('Gain Frequency Response of G(s)')

xlabel('Omega')

ylabel('G(j*omega)')

grid on

hold on

end

hold off

Using these examples your task is to obtain Matlab scripts and gain frequency characteristics for the following transfer functions:

-

-

-

Each student has to choose its values for within the interval (0;+10).

Task 3

Using the following Matlab scripts define phase frequency characteristics of the 1st and 2nd order links:

1st order links:

Matlab script:

w=0:0.1:3;

t=[1 2 3 4];

for k=1:4

x=w*t(k);

phi=-atan(x)

y=phi*180/pi;

title('Phase Frequency Response')

xlabel('Omega')

ylabel('Phase angle')

plot(w, y);

grid on

hold on

end

hold off

Overdamped links:

w=0:0.1:6;

for k=1:4

t3=[2 3 4 5];

t4=[1 2 3 4];

x1=w*t3(k);

x2=w*t4(k);

phi=-atan(x1)-atan(x2)

y=phi*180/pi;

plot(w,y)

title('Phase Frequency Response')

xlabel('Omega')

ylabel('Phase angle')

grid on

hold on

end

hold off

Underdamped links:

Y = atan(X) returns the inverse tangent (arctangent) for each element of X. For real elements

of X, atan(X) is in the range

The atan function operates element-wise on arrays. The function's domains and ranges include complex values.

All angles are in radians.

Matlab script:

x = -20:0.01:20;

y=atan(x)*180/pi;

plot(x,y)

title('Arctangent Function')

xlabel('X')

ylabel('Angle (degrees)')

grid on

The singular point is defined by the point where .

So in order to construct a phase frequency characteristic it’s necessary to create Matlab scripts before and after the singular point:

 

Before the singular point:

for w=0:0.1:1

t=1;

zeta=0.9;

a=(2*zeta*w*t)/(1-w.^2*t.^2);

alpha=-atan(a)

y=alpha*180/pi;

a,alpha,y

plot(w,y,'-bs')

title('Phase Frequency Response, zeta=0.9')

xlabel('Omega')

ylabel('Phase angle')

grid on

hold on

end

hold off

After the singular point:

for w=1.1:0.2:6

t=1;

zeta=0.9;

a=(2*zeta*w*t)/(1-w.^2*t.^2);

alpha=-atan(a)

y=-alpha*180/pi;

z=-y-180;

plot(w,z,'-bs')

title('Phase Frequency Response, zeta=0.9')

xlabel('Omega')

ylabel('Phase angle')

grid on

hold on

end

hold off

 

for w=0:0.1:1

t=1;

zeta=0.1;

a=(2*zeta*w*t)/(1-w.^2*t.^2);

alpha=-atan(a)

y=alpha*180/pi;

a,alpha,y

plot(w,y,'-rs')

title('Phase Frequency Response, zeta=0.1')

xlabel('Omega')

ylabel('Phase angle')

grid on

hold on

end

hold off

 

for w=0:0.1:1

t=1;

zeta=0.5;

a=(2*zeta*w*t)/(1-w.^2*t.^2);

alpha=-atan(a)

y=alpha*180/pi;

a,alpha,y

plot(w,y,'-gs')

title('Phase Frequency Response, zeta=0.5')

xlabel('Omega')

ylabel('Phase angle')

grid on

hold on

end

hold off

 

After the singular point:

for w=1.1:0.2:6

t=1;

zeta=0.9;

a=(2*zeta*w*t)/(1-w.^2*t.^2);

alpha=-atan(a)

y=-alpha*180/pi;

a,alpha,y

plot(w,y,'-bs')

title('Phase Frequency Response, zeta=0.9')

xlabel('Omega')

ylabel('Phase angle')

grid on

hold on

end

hold off

 

for w=1.1:0.2:6

t=1;

zeta=0.1;

a=(2*zeta*w*t)/(1-w.^2*t.^2);

alpha=-atan(a)

y=alpha*180/pi;

a,alpha,y

plot(w,y,'--rs')

title('Phase Frequency Response, zeta=0.1')

xlabel('Omega')

ylabel('Phase angle')

grid on

hold on

end

hold off

 

 

 

for w=1.1:0.2:6

t=1;

zeta=0.9;

a=(2*zeta*w*t)/(1-w.^2*t.^2);

alpha=-atan(a)

y=-alpha*180/pi;

z=-90+y;

plot(w,z,'-bs')

title('Phase Frequency Response, zeta=0.9')

xlabel('Omega')

ylabel('Phase angle')

grid on

hold on

end

hold off

for w=1.1:0.2:6

t=1;

zeta=0.9;

a=(2*zeta*w*t)/(1-w.^2*t.^2);

alpha=-atan(a)

y=-alpha*180/pi;

z=90+y;

plot(w,z,'-bs')

title('Phase Frequency Response, zeta=0.9')

xlabel('Omega')

ylabel('Phase angle')

grid on

hold on

end

hold off

 

Using these examples your task is to obtain Matlab scripts and phase frequency characteristics for the following transfer functions:

-

-

-

Each student has to choose its values for within the interval (0;+10).

 

Task 4

Define frequency bandwidth characteristic for the following transfer function:

num=[0 0 1]; den=[1 1 1];

sys = tf(num,den)

fb = bandwidth(sys)

 

Transfer function:

-----------

s^2 + s + 1

 

fb =

1.2711

 

Using this example your task is to obtain Matlab scripts and define frequency bandwidth characteristics for the following transfer functions:

-

-

-

Each student has to choose its values for within the interval (0;+10).

 

Question list

1. Mass-Spring-Damper System

2. Block diagram models

3. Frequency Response Methods

4. The connection between the Laplace and Fourier transforms

5. The particular solution – the system forced movement component

6. Frequency characteristics of control systems

7. The rules to construct the Nyquist diagram

8. Frequency bandwidth characteristics of control systems

9. Gain-frequency characteristics of control systems

10. Phase-frequency characteristics of control systems

11. The notion of a link

12. Frequency characteristics of typical dynamic links

- amplification links

- the 1st order links

- overdamped links

- underdamped links


1 | 2 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.021 сек.)