|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Теоретические сведения. Тема: Системы счисления. Перевод из одной системы счисления в другуюЛабораторная работа №1 Тема: Системы счисления. Перевод из одной системы счисления в другую Цель работы: Изучить различные системы счисления, овладеть приемами перевода чисел из одной системы счисления в другую. Форма отчета: выполнение аудиторного и домашнего заданий. Теоретические сведения Под системой счисления понимается способ представления чисел с помощью символов некоторого алфавита, называемых цифрами и соответствующие ему правила действия над числами. Все системы счисления делятся на позиционные и непозиционные. Непозиционными системами счисления являются такие системы, в которых каждая цифра сохраняет свое значение независимо от места своего положения в числе. Примером непозиционных систем счисления являются римская, древнеегипетская, вавилонская, славянская системы. К недостаткам таких систем относятся наличие большого количества знаков и сложность выполнения арифметических операций. Система счисления называется позиционной, если одна и та же цифра имеет различное значение, определяющееся местонахождением этой цифры в записи числа. Это значение меняется в однозначной зависимости от позиции, занимаемой цифрой, по некоторому правилу. Примером позиционных систем счисления являются десятичная, двоичная, восьмеричная, шестнадцатеричная, факториальная, уравновешенная системы. Название позиционной системы счисления определяется количеством различных цифр, употребляемых в данной системе счисления, которое является основанием системы счисления (p). Любое число X в позиционной системе счисления может быть представлено в виде полинома от основания p: (1.1)
где X – вещественное число; - коэффициенты или цифры числа (); Представление числа в p –ичной системе счисления в данном виде называется развернутой формой записи числа. С другой стороны, любое число в p –ичной системе счисления можно записать в виде последовательности цифр, начиная со старшей и отделяя запятой (точкой) целую часть от дробной. То есть представлению числа X в свернутой форме соответствует запись . В аппаратной основе компьютера лежат двухпозиционные элементы, которые могут находиться только в двух состояниях; одно из них обозначается 0, а другое - 1. Поэтому основной системой счисления применяемой в компьютерной технике является двоичная система. С целью сокращения разрядов для записи числа при выводе на экран компьютера используют системы с основанием, являющимся целой степени числа 2: восьмеричную и шестнадцатеричную системы счисления. Для представления одной цифры восьмеричной системы счисления используется три двоичных разряда (триада), шестнадцатеричной – четыре двоичных разряда (тетрада) (таб. 1). Таблица 1.Взаимосвязь систем счисления Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.) |