|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Идеальный плоский дисплейВ настоящее время ЖКД составляют почти 85% от объема выпуска всех плоских информационных дисплеев. Это объясняется их высокими характеристиками и конструктивным многообразием этих устройств. Развитие ЖКД определяется острой конкуренцией различных технологий и использованием новых материалов. Различают просветные, отражательные и полупрозрачные (прозрачно-отражательные) жидкокристаллические дисплеи. Просветные используют заднюю подсветку для освещения ЖК экрана, обеспечивающую высокую яркость и высокое контрастное отношение. Они имеют ограниченный угол обзора и более пригодны для индивидуального пользования, например, в ноутбуках и игровых приставках. На рисунке слева показана схема просветных (а) и отражательных (б) дисплеев. Абсолютно идеальный прибор для отображения визуальной информации пока не придуман. Пока самым подходящим средством для показа статических и движущихся картинок считается плоский прямоугольник диагональю дюймов около двадцати, расположенный в полуметре от глаз сидящего человека. Картинка на этом прямоугольнике (будем называть его экраном) формируется из миллиона-двух дискретных точек (будем называть их пикселями). Классические пропорции сторон экрана – 4:3, то есть высота картинки составляет 0.75 от ширины, однако в последнее время применяется пропорции 16:9 (телевидение высокой четкости). Чаще всего сейчас распространены разрешения от 640 х 480 до 7680 х 4800 пикселей. Рассмотрим изображение у идеального плоского жидкокристаллического дисплея. Возьмём какую-нибудь картинку и увеличим в десять раз:
И в сорок раз:
Если бы идеальный плоский дисплей существовал, и мы посмотрели на него в лупу с сорокакратным увеличением, то увидели бы именно это: квадратные пиксели разного цвета, из которых состоит изображение. Впрочем, сделать пиксели такими идеальными, чтобы у них совсем не было границ, очень трудно, а может даже и невозможно.
Именно так формируется изображение практически на всех существующих типах дисплеев: жидкокристаллических, ЭЛТ и плазменных (разве что форма и порядок расположения субпикселей могут слегка различаться). Каждый субпиксель отвечает за свой первичный цвет – красный, зелёный или синий (Red, Green, Blue - RGB). Если зажечь все субпиксели на максимум, то получается белый цвет, если зелёный и синий субпиксели приглушить, а красный оставить гореть ярко – получается красный цвет, ну и так далее. Расстояния между центрами пикселей достаточно малы (от 0.2 до 0.3 мм – в зависимости от конкретной модели монитора), а уж субпиксели и вовсе микроскопические, поэтому издали мы не видим всей этой разноцветной мешанины и три ярко горящих субпикселя воспринимаем как одну белую точку.
3.Разрешение дисплея.
От размера дисплея зависят и занимаемое им рабочее пространство, и, что немаловажно, его цена. Несмотря на устоявшуюся классификацию ЖК-дисплеев в зависимости от размера экрана по диагонали (от 3 до 30дюймов), более корректной является классификация по рабочему разрешению. Дело в том, что, в отличие от мониторов на основе ЭЛТ, разрешение которых можно менять достаточно гибко, ЖК-дисплеи имеют фиксированный набор физических пикселей. Именно поэтому они рассчитаны на работу только с одним разрешением, называемым рабочим. Косвенно это разрешение определяет и размер диагонали матрицы, однако мониторы с одинаковым рабочим разрешением могут иметь разную по размерам матрицу. Например, мониторы с диагональю от 15 до 16 дюймов в основном имеют рабочее разрешение 1024Ѕ768, а это означает, что у данного монитора действительно физически содержится 1024 пикселя по горизонтали и 768 пикселей по вертикали. Рабочее разрешение монитора определяет размер иконок и шрифтов, которые будут отображаться на экране. К примеру, 15-дюймовый монитор может иметь рабочее разрешение и 1024Ѕ768, и 1400Ѕ1050 пикселей. В последнем случае физические размеры самих пикселей будут меньшими, а поскольку при формировании стандартной иконки в обоих случаях используется одно и то же количество пикселей, то при разрешении 1400Ѕ1050 пикселей иконка по своим физическим размерам окажется меньше. Для некоторых пользователей слишком маленькие размеры иконок при высоком разрешении монитора могут оказаться неприемлемыми, поэтому при покупке монитора нужно сразу обращать внимание на рабочее разрешение. Конечно же, монитор способен выводить изображение и в другом, отличном от рабочего разрешении. Такой режим работы монитора называют интерполяцией. В случае интерполяции качество изображения оставляет желать лучшего. Режим интерполяции заметно сказывается на качестве отображения экранных шрифтов, пикселезации картинки, просмотра быстро движущихся предметов на экране
4.Принцип действия TFT-LCD дисплеев Общий принцип формирования изображения на экране хорошо иллюстрирует рис. 4. А вот как управлять яркостью отдельных субпикселей? Новичкам обычно объясняют так: за каждым субпикселем стоит жидкокристаллическая заслонка. В зависимости от приложенного к ней напряжения она пропускает больше или меньше света от задней лампы подсветки. И все сразу представляют себе некие заслонки на маленьких петельках, которые поворачиваются на нужный угол... примерно так:
На самом деле, конечно, всё гораздо сложнее. Нет никаких материальных заслонок на петлях. В реальной жидкокристаллической матрице световой поток управляется примерно так:
Свет от лампы подсветки (идём по картинке снизу вверх) первым делом проходит сквозь нижний поляризующий фильтр (белая заштрихованная пластина). Теперь это уже не обычный поток света, а поляризованный. Дальше свет проходит через полупрозрачные управляющие электроды (жёлтые пластинки) и встречает на своём пути слой жидких кристаллов. Изменением управляющего напряжения поляризацию светового потока можно менять на величину до 90 градусов (на картинке слева), или оставлять неизменной (там же справа). Внимание, начинается самое интересное! После слоя жидких кристаллов расположены светофильтры и тут каждый субпиксель окрашивается в нужный цвет – красный, зелёный или синий. Если посмотреть на экран, убрав верхний поляризующий фильтр – мы увидим миллионы светящихся субпикселей – и каждый светится с максимальной яркостью, ведь наши глаза не умеют различать поляризацию света. Иными словами, без верхнего поляризатора мы увидим просто равномерное белое свечение по всей поверхности экрана. Делаем выводы: 1) Яркость каждого субпикселя может меняться плавно, аналоговыми методами. Ведь мы можем завернуть поляризацию потока света на любой угол в промежутке от 0 до 90 градусов – это определяется управляющим напряжением, приложенным к ячейке. Аналоговая природа регулировки – несомненный плюс. ЖК-матрица представляет из себя толстенький слоёный бутерброд, а скорее даже сэндвич. Теперь понятно, почему у ЖК-мониторов проблемы с углами обзора. Даже удивительно, как производители достигают углов обзора 120-160 градусов. Ведь если смотреть под острым углом к поверхности, то и слой поляризатора, и Black Matrix заглушают и искажают свет от конкретного субпикселя. Да и угол поляризации светового потока у конкретного субпикселя получается не совсем таким, как при строго перпендикулярном взгляде на матрицу. 2) Каждый субпиксель матрицы обслуживается своим персональным регулятором – тонкоплёночным транзистором (Thin Film Transistor – TFT). Здесь нет строчной развёртки, как в ЭЛТ, и это очень хорошо. Каждый субпиксель экрана светится с нужной яркостью до тех пор, пока от управляющей схемы (видеокарты) не придёт команда сменить цвет точки. Поэтому мерцания на экране нет при любой частоте кадровой развёртки – хоть при 60 герцах. 3) Однако, в том, что у каждого субпикселя есть персональный регулятор, кроется и минус: если какой-то управляющий транзистор сгорит – прощай полноценный пиксель и здравствуй «битая точка». 4) Поскольку в роли «заслонок» выступают вполне реальные жидкие кристаллы с присущей им вязкостью и отнюдь не мгновенной реакцией на управляющий импульс, смена яркости субпикселей происходит не мгновенно. Пока молекула жидкого кристалла закрутится на нужный угол, пока раскрутится обратно... Именно в фундаментальных свойствах материи, а именно – в характеристиках жидких кристаллов – кроется одна из главных проблем TFT-LCD. Это ограниченная скорость реакции и, как следствие, проблемы с качественным отображением быстро меняющихся динамических сюжетов (скроллинг текста, быстрые 3D-Action-игры с высокими FPS (Frames Per Second — количество кадров в секунду) и т. п.. 5.Классификация TFT-LCD дисплеев
5.1TN+Film 5.2 IPS Для обеспечения больших углов обзора была предложена схема с поперечным направлением приложенного электрического поля. Она нашла применение в TFT ЖКД в 1992 году. Встречно-штыревые электроды размещены на одной подложке и создают поперечное азимутальное краевое поле, вызывая поворот директора в плоскости. Эта схема управления получила название IPS (переключение в плоскости).
5.3MVA Существуют некоторые разновидности данной технологии, например PVA (Patterned Vertical Alignment) от Samsung, однако общий принцип функционирования остаётся неизменным, а в тонкости нам углубляться нет смысла.
Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.006 сек.) |